

COURSE DESCRIPTION – ACADEMIC YEAR 2023/2024

Course title	Modeling and Simulation of Multibody Systems with Multiphysics Coupling	
Course code		
Scientific sector	ING-IND/13 + ING-IND/14	
Degree	PhD in Advanced Systems Engineering	
Semester	2	
Year	2023-2024	
Credits	3	
Modular		

Total lecturing hours	30
Attendance	Attendance to the lectures is highly recommended. Non-attending students have to contact the lecturer at the start of the course to agree on the modalities of the independent study.
	For the hands-on sessions and case-study/project activities, attendance is compulsory.
Prerequisites	
Specific educational objectives	This course aims at touching fundamental and advanced concepts on the: A. modeling and simulation of complex articulated mechanical systems, denoted as multibody systems, such as vehicles, robots, mechanical transmissions, etc., also featuring a multiphysics coupling. B. various modelling approaches available to simulate multiphysical engineering systems. Interactions between solids and between solids & fluids will be covered both from a theoretical and from a practical point of view. Hands-on sessions will allow students to implement and evaluate case-studies and examples.

Lecturer(s)	Renato Vidoni https://www.unibz.it/it/faculties/engineering/academic-staff/person/31254-renato-vidoni
	Franco Concli
	https://www.unibz.it/it/faculties/engineering/academic-
	staff/person/34279-franco-concli
Contact	RV: L6.05, renato.vidoni@unibz.it, +39 0471 017203
	FC: L4.04, renato.vidoni@unibz.it, +39 0471 017748
Scientific sector of	ING-IND/13
lecturer(s)	ING-IND/14
Teaching language	English
Office hours	Arrange beforehand by email.
Lecturing Assistant (if any)	
Contact LA	

List of topics	This course is subdivided into two modules aimed at touching fundamental and advanced concepts on the:
	a) Modeling and simulation of complex multibody systems (MBS).b) Approaches available to simulate multi-physical engineering systems.
	Topics:
	 a) Introduction and reference kinematics for MBS; analytical techniques; equations of motion; mechanics of deformable bodies (small and large deformations); Floating Frame of Reference formulation or Equivalent Rigid Link System formulation; hints on Model Order Reduction. b) Grid-based (Finite Volumes - FV - and Finite Elements - FE) and meshless (Smooth Particle Hydrodynamics - SPH) modelling approaches; strong and weak couplings between different physics (mesh-based approaches - i.e FV & FV and FV & FE). SPH theory and application.
	During the hands-on sessions, open-source software (e.g. Python, OpenFOAM®, Calculix, DualSPHysics) or commercial software (e.g.

Tea	ching	forma	ıt

Learning outcomes

Frontal lectures, exercises, project(s).

By the end of the course, students should be able to:

Adams MSC or Matlab) will be uses.

Knowledge and understanding	
D1.1) Know the theoretical bases of the available numerical	
simulations techniques for the solution of engineering problems (M1	
& M2).	
Applying knowledge and understanding	

Applying knowledge and understanding

- D2.1) Know how to apply modelling techniques for multibody systems (M1).
- D2.2) Know how to apply numerical approaches to practical design cases of multiphysical environments (M2).

Making judgements

- D3.1) Critically analyze the results of the simulations, discuss their accuracy, on the basis of the modelling approach (M1 & M2).
- D3.2) Define the best modelling approach with a tradeoff between the accuracy and the computational effort (M1 & M2).

Communication skills

D4.1) Prepare a technical report/paper and a presentation describing the selected topic/ application where the methods, developed activity and choices are presented and discussed (M1 & M2).

Learning skills

D5.1) Ability to autonomously extend the knowledge acquired (M1 & M2).

Assessment	Formative assessment		
	Form In class exercises	Length /duration 8 X 120 minutes	ILOs assessed 2, 3, 4
	Summative assessme Form assessed	ent %	ILOs
	Report and presenta	tion* 100	2,3,4,5
Assessment language	English		
Assessment Typology			
Evaluation criteria and criteria for awarding marks	Quality of the technical report (40%), correctness of the results (30%) Presentation (30%)		

Required readings	Lecture notes and documents for exercise will be available on OLE.
Supplementary readings	Further material will be possibly provided by the lecturers
Software used	Python, OpenFOAM®, Calculix, DualSPHysics, Adams MSC and/or Matlab, PrePoMax