

Syllabus Course description

Course title	Advanced Topics on Machine Design
	Materials behavior and machine elements
Course code	
Scientific sector	ING-IND/14
Degree	Master in Industrial Mechanical Engineering
Semester	2
Year	Ι
Academic year	2022/23
Credits	5
Modular	No
Total lecturing hours	32
Total lab hours	
Total exercise hours	12
Attendance	
Prerequisites	Machine Design
Course page	Course Offering / Free University of Bozen-Bolzano
	(unibz.it)
Specific educational	The course aims to introduce the design mind-set and the

Specific educational objectives	The course aims to introduce the design mind-set and the main methods for the design of mechanical systems, to provide exposure to the practice of design through application and to encourage understanding of the broader implications of design.
	Students will learn, in the first module, fundamental concepts and methodologies for understanding and

modelling mechanical systems. In the second module, the theory of numerical finite element methods is introduced. Emphasis is given to practical applications, especially considering the advantages achievable with the latest technologies.

Module 1	Materials behavior and machine elements
Lecturer	Dr. Franco Concli
	Email: franco.concli@unibz.it
	Ph.: 0471017748
	Office: L4.04
Scientific sector of the lecturer	ING-IND/14
Teaching language	English
Office hours	By appointment
Teaching assistant (if any)	no
Office hours	15
List of topics covered	The module will cover:

	 PART 1: Material behavior and basic concepts Principle of virtual work Force Method for the solution of Hyperstatic Structures Multi-axial fatigue criteria a. Critical plane concepts Low cycle fatigue of materials a. Masing Hp. b. Ramberg-Osgood eq. c. Neuber Hp. d. Basquin-Coffin-Manson eq. e. Loading spectra
	 PART 2: Machine Elements Shafts and shaft components Interference fits (shaft-hub connection) Deflections 6. Gears Failure modes (bending - pitting - micro pitting - scuffing) Gear types (spur - helical - bevel - worm) Gear configurations (parallel axis, orthogonal axis, planetary) Synthetic factors (sizing) Strength calculation (ISO 6336) Gear stiffness (Deformation under load) Examples of gearboxes (motorcycle and car transmissions)
	 7. <u>Bolted connections</u> (screwed joints) a. Pretension b. Tearing c. Sheet yielding 8. <u>Welded connections</u> a. <u>Pressure vessel</u>
Teaching format	 The topics are presented by the professor by means of Power Point presentations or the blackboard. A selection of the material presented in class as well as online resources and useful material will be available in the OLE database/. Further deepening material will be supplied or recommended by the teacher.

Learning outcomes	Knowledge and understanding	
	1) Handle the analysis methods used in structural	

	design of mechanical systems.
	 <u>Applying knowledge and understanding</u> 2) Know how to face a new project of a mechanical system starting from its functional design. <u>Making judgements</u> 3) Identify the critical zones and the corresponding
	 stress states of all components of a mechanical system, under service loading conditions. 4) Choose the geometry and materials able to satisfy the requirements of each component in terms of strength, deformation, fatigue life, and so on and realizing the technical drawing of the system.
	C <u>ommunication skills</u> : 5) Oral communication skills (technical language)
	Learning skills 6) Ability to autonomously extend the knowledge acquired
Assessment	Formative assessment In class and exercises and activities (2,3,4)
	Summative assessment
	The assessment of the course is:
	• <i>Written exam</i> 3/4 exercises
	 Oral Exam Open-ended questions Theoretical knowledge (40%) Ability to provide examples/applications of the theoretical concepts (30%) Ability to establish relationships between topics (20%) Mastery of language (also with respect to teaching language) (10%)
Assessment language Evaluation criteria and	 Open-ended questions Theoretical knowledge (40%) Ability to provide examples/applications of the theoretical concepts (30%) Ability to establish relationships between topics (20%) Mastery of language (also with respect to teaching

Required readings	Lecture notes and documents for exercise will be available
	on the reserve collections

·····

	There is no single textbook that covers the entire course. The course material is collected from various sources that will be announced during the course. A selection of the material presented in class and useful material will be available in the course reserve collection database
Supplementary readings	R.S.KHURMI AND J.K. GUPTA, A Textbook of Machine Design, S Chand (ENG) Shigley's Mechanical Engineering Design, McGraw-Hill (ENG) G. NIEMANN, H. WINTER, Maschinenelemente, Springer (GER) P. HAEFELE, L. ISSLER, H. RUOSS, fertigkeitslehre – Grundlagen, Springer (GER) P. DAVOLI, M. FILIPPINI, C. GORLA, A. LO CONTE, Lezioni sugli organi di macchine, Politecnica (ITA) P. DAVOLI, A. BERNCASCONI, M. FILIPPINI, S. FOLETTI, Comportamento meccanico dei materiali, McGraw-Hill (ITA)