

Syllabus Course description

Course title	Mobile Robotics		
Course code	47551		
Scientific sector	ING-INF/04		
Degree	Master in Industrial Mechanical Engineering		
Semester	II		
Year	Ι		
Academic Year	2020-2021		
Credits	6		
Modular	No		

Total lecturing hours	16 hrs
Total exercise hours	48 hrs
Attendance	Attendance at lectures and exercise sessions is strongly recommended.
Prerequisites	none
Course page	https://www.unibz.it/en/faculties/sciencetechnology/mas ter-industrial-mechanical-engineering/course- offering/?academicYear=2020

Specific educational objectives	A mobile robot is an unmanned system that operates in unstructured and dynamic environments, with or without the oversight of a human. Applications of mobile robots include: environmental monitoring; manufacturing logistics and production; search & rescue; construction; forestry management, agricultural monitoring and production; mining; marine measurement and monitoring; and aerospace operations. This course covers the fundamental principles of mobile robotics at an introductory level. The topics covered include: functional architecture of unmanned systems (electrical, mechanical and software); vehicle dynamics and modeling; common navigation sensors, state & disturbance estimation; low- level control; and trajectory generation. Laboratory exercises that use Matlab, Simulink and software for
	controlling unmanned vehicles will be given.

Lecturer	Prof. Karl von Ellenrieder
	Facoltà di Scienze e Tecnologie
	Building L, Room 6.02
	Tel.: +39 0471 017172
	E-mail: karl.vonellenrieder@unibz.it
	Web :
	https://www.unibz.it/en/faculties/sciencetechnology/academic-
	staff/person/37038-karl-dietrich-von-ellenrieder

Laboratory Instructor	Prof. Helen Henninger			
	Facoltà di Scienze e Tecnologie			
	Building L, Room 6.02			
	Tel.: +39			
	E-mail: HelenClare.Henninger@unibz.it			
	Web :			
	https://www.unibz.it/en/faculties/sciencetechnology/academic-			
	staff/person/39403-helen-clare-henninger			
Scientific sector of the	ING-INF/04 - Automatica			
lecturer/lab instructor				
Teaching language	English			
Office hours	As listed on Cockpit or by appointment			
Teaching assistant (if	NN			
any)				
Office hours	As listed on Cockpit or by appointment			
List of topics covered	The course covers the following topics:			
	1. Functional architecture of unmanned systems.			
	2. Vehicle dynamics and modeling.			
	a. Inertial and body-fixed coordinate systems			
	b. Dynamic equations of motion			
	3. Common navigation sensors.			
	a. Compass			
	b. Inertial Measurement Units (IMUs)			
	c. Global Positioning System (GPS) Sensors			
	4. Low-level, control.			
	a. Fundamentals of state space control			
	b. Fundamentals of backstepping control			
	c. Techniques for mitigating actuator saturation			
	5. State & disturbance estimation.			
	a. State estimation			
	b. Kalman filtering			
	c. Disturbance observers			
	6. Path generation & waypoint navigation.			
Teaching format	Classroom lectures and laboratory exercises			

Learning outcomes (ILOs)	 Knowledge and understanding Applying basic principles to a broad range of dynamic system models (such as those typically learned in the 1st cycle).
	 Defining sensing and controller requirements for unmanned vehicles that operate in different conditions. Understanding factors that affect system performance and stability. Use of state space techniques for designing controllers and observers.

Applying knowledge and understanding
5. Analyzing, developing and presenting control & navigation systems for applications that span multiple disciplines through laboratory exercises, which complement the lectures.
Making judgements
6. On the choice of analytical and numerical tools to use in the lab exercises. This may require you to integrate knowledge, handle complexity, and formulate judgements with incomplete data.
Communication skills
 Laboratory reports will require you justify your solutions/conclusions concisely (in clear and simple language).
Learning Skills
8. Students will be required to develop a proficiency in Matlab and Simulink with a few in-class examples, but mostly on their own. This is intended to help students develop the ability to study in a manner that is largely self-directed or autonomous.

Assessment	Formative assessment			
	Form	Len	gth /duration	ILOs assessed
	Exercises	18 h	ours total	1-8
	Summative assessment			
	Form	%	Length /duration	ILOs assessed
	Exercises	40		1-8
	Final Exam	60	4 hours	1-6
Assessment language	English			
Assessment language	Ligist			
Evaluation criteria and criteria for awarding marks	iteria for awarding answers; level of understa			id correctness c
	Written Final answers.	Exam:	Completeness an	d correctness c

Freie Universität Bozen unibz Libera Università di Bolzano Università Liedia de Bulsan

	Students are required to receive an overall grade of greater than 60/100 points in order to pass the course.
Required readings	Lecture notes and exercises will be available on the UniBZ Open Learning Environment (OLE)
Supplementary readings	Additional books and articles may be recommended by the instructor during the course.