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Abstract: The effect of biofuel blends on the engine performance and emissions of agricultural 
machines can be extremely complex to predict even if the properties and the effects of the pure 
substances in the blends can be sourced from the literature. Indeed, on the one hand, internal 
combustion engines (ICEs) have a high intrinsic operational complexity; on the other hand, biofuels 
show antithetic effects on engine performance and present positive or negative interactions that are 
difficult to determine a priori. This study applies the Response Surface Methodology (RSM), a 
numerical method typically applied in other disciplines (e.g., industrial engineering) and for other 
purposes (e.g., set-up of production machines), to analyse a large set of experimental data 
regarding the mechanical and environmental performances of an ICE used to power a farm tractor. 
The aim is twofold: i) to demonstrate the effectiveness of RSM in quantitatively assessing the effects 
of biofuels on a complex system like an ICE; ii) to supply easy-to-use correlations for the users to 
predict the effect of biofuel blends on performance and emissions of tractor engines. The 
methodology showed good prediction capabilities and yielded interesting outcomes. The effects of 
biofuel blends and physical fuel parameters were adopted to study the engine performance. 
Among all possible parameters depending on the fuel mixture, the viscosity of a fuel blend 
demonstrated a high statistical significance on some system responses directly related to the engine 
mechanical performances. This parameter can constitute an interesting indirect estimator of the 
mechanical performances of an engine fuelled with such blend, while it showed poor accuracy in 
predicting the emissions of the ICE (NOx, CO concentration and opacity of the exhaust gases) due 
to a higher influence of the chemical composition of the fuel blend on these parameters; rather, the 
blend composition showed a much higher accuracy in the assessment of the mechanical 
performance of the ICE. 

Keywords: farm tractor; diesel engine; response surface method; biodiesel; bioethanol; kinematic 
viscosity; engine performances; CO and NOx emissions; exhaust gases opacity 

 

1. Introduction 

1.1. Biodiesel and bioethanol as alternative fuels  

Biofuels are commonly considered one of the main paths towards a new sustainable paradigm 
in transportation technologies. As stated by the World Energy Council, the definition of a 
sustainable large-scale model in the sectors of energy production and transportation is based on 
three core dimensions: (a) energy security, (b) energy equity, and (c) environmental sustainability 
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[1]. Biofuels are able to positively tackle all of these three dimensions by helping to solve what is 
commonly known as the energy trilemma [1]. In fact, due to their production technologies, their 
wide and different biological origins, and their renewable nature, biofuels could ensure a high 
energy security and equity [2]. Moreover, the use of biofuels as substitutes of fossil fuels is 
commonly associated with a strongly-positive impact on environmental sustainability [3]. Indeed, 
thanks to their organic origin, biofuels could encourage the shift towards an almost carbon-neutral 
transport system. Indeed whenever biofuels are used, CO2 emissions are absorbed by the 
photosynthesis process of the biomass from which they are obtained [4]. According to the European 
Commission report on the 2050 climate-neutral economy strategy [5], transportation systems are 
responsible for around a quarter of greenhouse-gas (GHG) emissions in the European Union. 
Hence, in order to reduce the amount of CO2 released in the atmosphere, relevant changes in 
current transportation technologies need to be implemented.  

Biodiesel, namely fatty acid methyl ester, has recently become the most widely-recognized 
renewable biofuel [6]. Its physical and chemical characteristics make it suitable to be used in 
compression ignition (CI) engines without any major modifications to current technologies [7,8]. In 
particular, the biodiesel obtained through transesterification (the most common way to produce 
biodiesel [4]) is able to ensure high-quality biodiesel suitable for operating CI engines [6]. Based on 
the feedstocks origin, biodiesel can be categorized into four different groups [9]: (i) edible vegetable 
oils (soybean, palm oil, etc.); (ii) non-edible vegetable oils (Jatropha curcas L., linseed, etc.); (iii) waste 
or recycled oils (cooking oil, vegetable oil soapstocks, etc.); (iv) animal fats (beef tallow, pork lard, 
etc.). Edible oils are known as first-generation biodiesel feedstocks; non-edible vegetable oils, waste 
or recycled oil as well as animal fats, are regarded as second-generation biodiesel feedstocks. 
Algae-oil-based biodiesel is instead considered a third-generation biofuel because of its peculiar 
origin, its high oil content, and rapid biomass production [10]. In order to assess the use of biodiesel 
in internal combustion engines the main chemical and physical properties of this fuel have to be 
experimentally investigated conforming to current technical standards. The most important fuel 
properties which have a direct impact on the combustion phenomena occurring in ICEs are: cetane 
number (ASTM D613); kinematic viscosity (ASTM D445); density (ASTM D1298); calorific value 
(ASTM D240); flash point (ASTM D93); pour point (ASTM D97); cloud point (ASTM D2500); 
oxidation stability (EN 14112); acid value (ASTM D664); lubricity (ASTM D6079); carbon residue 
(ASTM D4530); iodine value (EN 14111), and sulphated ash content (ASTM D874) [9]. It is 
interesting to notice that the reference testing conditions (i.e., temperature, pressure) of the cited 
norms are very different from the operating conditions occurring in ICE combustion chambers and 
they may therefore not be completely representative of the dynamic behaviour of the fuel pumping 
system and of the combustion process. However, such measurements establish the standards in 
which generate scientifically sound comparisons and assessments. 

Ethanol, perhaps the most common oxygenated liquid hydrocarbon fuel (together with 
methanol), has been considered as an automotive fuel since the end of the 19th century [4] and has 
recently been attracting increasing attention due to its renewable nature (bioethanol). As will be 
further discussed below, the use of bioethanol in ICEs implies some controversial aspects, which 
have prevented its spreading on the fuel market until now. It is nevertheless commonly considered 
a suitable biofuel for CI engines when used as an additive for diesel and biodiesel. According to 
Thangavelu et al. [11], bioethanol production can be classified based on the type of feedstocks used: 
(i) agricultural residues (wheat straw, rice straw, etc.); (ii) woody biomass (industrial hemp, yellow 
poplar, and construction and demolition wood waste); (iii) algae biomass (Chlamydomonas 
reinhardtii, microalgae, etc.). Bioethanol production, especially when it relies on agricultural 
residues, represents a good opportunity for the economic and social development of rural 
agriculture-based communities. At the same time, controversial nutritional and ethical concerns 
must be voiced when dealing with the use of such feedstocks: the production of bioethanol and 
biofuels in general must be carried out whilst ensuring the equilibrium between land, water, and 
energy consumption in order to be considered sustainable [4]. 
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As concerns the physical and chemical characteristics of these alternative fuels, the aim is to 
obtain properties as close as possible to traditional fossil fuels in order to facilitate the use of these 
alternative fuels in ICEs with only minor modifications to the fuel pumping, distribution and 
injection sub-systems. The most important characteristics of diesel oil, biodiesel and bioethanol are 
displayed in Table 1, where typical reference values are reported [12,13]. 

Table 1. Diesel oil/biodiesel/bioethanol main physical and chemical properties and typical values 
[4,12,13]. 

Fuel property Measurement unit 
Value 

Diesel oil Biodiesel Bioethanol 
Cetane number - 52 51 6 

Lower heating value MJ kg−1 42.5 37.5 28.4 
Density @ 20 °C kg m−3 840 871 786 

Viscosity @ 40 °C mPa s 2.4 4.6 1.2 
Latent heat of evaporation kJ kg−1 250–290 300 840 

Carbon content % (on mass) 86.6 77.1 52.5 
Hydrogen content % (on mass) 13.4 12.1 13.0 

Oxygen content % (on mass) 0.0 10.8 34.8 
Sulphur content mg kg−1 10–30 <10 - 

Boiling point °C 210–235 300–350 79 
Flash point °C 52–96 120–170 12 

1.1.1. Fuel properties effects in compression-ignition engines 

CI engines are the most widespread power-generation units in agricultural machines and 
tractors [14]. The effects of the fuel properties on the combustion process are crucially relevant and 
must be taken into great consideration when alternative fuels are used. The viscosity has a direct 
effect on the fuel injection process. Since the fuel viscosity increases as the ambient temperature 
decreases, when performing a cold start at low ambient temperatures the resulting higher viscosity 
of the fuel causes poorer fuel atomization and vaporization, larger droplets, and a greater 
in-cylinder penetration of the fuel spray [4,15–17]. High viscosity may also reduce fuel flow rates, 
thus affecting the optimal functioning of auxiliary equipment such as the fuel feed pump [18,19]. 
The fuel density increases as temperature decreases. The fuel injection process is also affected by 
the higher density when performing a cold start at low ambient temperatures. The cetane number 
(CN) describes the auto-ignition capabilities of the fuels used in a CI engine. A high CN indicates a 
quick ignition of the fuel which in turn leads to a more complete fuel combustion and to a quicker 
start-up phase of the engine. On the other hand, harmful NOx emissions are reduced when the CN 
decreases because of the consequent ignition delay and the lower combustion temperature [20]. 
Water injection into the combustion chambers of diesel engines [21] is a solution that has been 
proposed with the aim of curbing the combustion temperature and, therefore, the NOx emissions. 
The evaporation characteristics (boiling point, latent heat of evaporation) influence the spray 
structure and bear consequences on the air–fuel mixture preparation [4]. The flash point (FP) 
temperature is the minimum temperature (at a pressure of 101.3 kPa) at which the fuel ignites. Low 
FP values might represent issues for the safety and a proper handling of fuels [4]. High oxygen 
fractions are related to higher fuel-combustion temperatures and consequently to higher 
NOx-formation rates for diffusion flames [20]. 

1.1.2. Biodiesel and bioethanol use in compression ignition engines 

Several studies [22,23] state that biodiesel has positive effects on exhaust emissions of CI 
engines: carbon monoxide (CO) is lowered up to 30–50 % depending on the share of biodiesel in the 
blend [24], as well as hydrocarbons (HC) and particulate matter (PM). The main responsible for 
these positive effects is the higher oxygen content and the lower hydrogen and carbon content 
compared to petro-diesel [6,24]. On the other hand, a variety of studies recognize [20] that biodiesel 
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properties bring in negative effects with respect to nitrogen oxides (NOx) emissions, whose 
substantial relative increase represents one of the main cons of using biodiesel as a petro-diesel 
substitute [25]. Controlling NOx emissions is crucial in order to meet the EURO and TIER emission 
standards. Improvements in terms of NOx emissions can be obtained by varying the biodiesel 
substitution rate in diesel-biodiesel blends [26], as well as introducing small percentages of a third 
alcohol-based fuel (ethanol, methanol or fusel-oil [27]) to produce ternary diesel-blends. The use of 
these ternary blends in diesel engines increases the brake specific fuel consumption (BSFC) but it 
also decreases PM concentrations in the exhaust gases, which is the greatest concern of traditional 
diesel engines [28]. Moreover, the effect of biodiesel and bioethanol on the power output must be 
considered. It has been frequently observed that the engine power and torque increase with the 
increase in biodiesel percentage in the blends [29]. Such behaviours should be credited to the higher 
oxygen content, the higher biodiesel consumption, an advance of injection timing and a shorter 
ignition delay time [29]. On the other hand, when bioethanol is introduced in the fuel blend, the 
consequent decrease of the Lower Heating Value (LHV) is responsible for a drop in the maximum 
power output levels [28]. However, different indications can be found in literature showing that the 
benefits in terms of cold flow properties caused by the addition of bioethanol could boost the power 
output levels [30]. Hence, when using ternary blends, the substitution of fuels in the mixture should 
respect a trade-off between the de-rating of performance and the reduction of polluting emissions. 
For example, in Shahir et al. [28] the best results have been obtained with 5%-ethanol blends: a 
small increase in BSFC is measured together with sensible reductions of PM, HC, CO and CO2 
emissions [28]. However, due to the complex fuel-interactions occurring in the combustion of 
biodiesel-bioethanol mixtures, the effects on NOx emissions are still not clear. Some studies register 
a NOx reduction [31,32], others report an increase in pollutant concentration [28,33]. These 
controversial results highlight the need for further investigation in terms of assessment of emissions 
and performances by developing or applying numerical optimization methods. These tools should 
allow the users to predict a priori the characteristics of a fuel blend and, above all, its effect on the 
motor outputs (mechanical and environmental performances). In the explained terms, these 
methods can be regarded to as predictive methods. 

1.2. Emissions and performances prediction: application of the Response Surfaces Methodology 

The Response Surface Methodology (RSM), as extensively described by Bezerra et al. [34], is a 
collection of mathematical and statistical techniques based on the fit of a polynomial equation to the 
experimental data. It was first developed by George E. P. Box and K. B. Wilson in 1951 [35]. The 
final goal of the application of RSM is to describe in a mathematically simple and intuitive way 
(with multilinear models only) the behaviour of a dataset in order to carry out statistical previsions. 
A response of interest relies on several significant variables, and the aim of the method is to model 
and optimise such response [36]. In the last decade, several researchers in the field of alternative 
fuels began applying RSM to the modelling and optimization issues. A typical engine-related RSM 
analysis involves engine parameters such as load, speed, fuel injection timing to reduce fuel 
consumption, exhaust emissions and noise, and aims to improve engine performance [37–39] or to 
study the behaviour of auxiliary organs [19]. A selection of works from the extensive review paper 
by Yusri et al. [36], and how to proceed with RSM application in the field of biodiesel and 
bioethanol, is presented hereinafter. 

Bose et al. [40] have applied a D-optimal RSM to a single-cylinder diesel engine (with 
indirect-injection system) fuelled with diesel-ethanol mixtures. Engine load and ethanol 
concentrations have been used as input parameters, while BSFC and NOx, CO and HC 
concentrations have been set as output variables. RSM application has shown a high precision, with 
a R2 in the range of 0.958 (HC) and 0.983 (BSFC). Fang et al. [41] have applied a central composite 
design RSM to a Isuzu 4HK1-TC direct-injection medium-duty diesel engine fuelled with 
diesel-ethanol mixtures. Gross indicated mean effective pressure and engine speed have been used 
as input parameters, while CO2, HC, CO and NOx concentrations have been set as output variables. 
Pandian et al. [42] have applied RSM to a twin-cylinder water-cooled diesel engine (with a 
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direct-injection system) fuelled with diesel-biodiesel mixtures. Injection timing, injection pressure 
and nozzle tip protrusion have been used as input parameters while Brake Thermal Efficiency 
(BTE), BSFC, smoke opacity and NOx, CO and HC concentrations have been set as output variables.  

RSM application has shown a high precision, with a R2 in the range of 0.939 (HC) and 0.976 
(NOx). The smoke opacity is a very interesting parameter related to the quality of fuel spray 
formation and the quality of the combustion, easier to be obtained than PM gravimetric distribution 
and, for this reason, investigated by many researchers. Although the different combustion modes of 
a CI engine could result in the emission of elemental carbon and HC, thus impacting the correlation 
between soot (filter smoke number) and smoke opacity, Chen et al. [43] demonstrated the 
correlation of these two quantities for diesel oil with R2 = 95%. Ensor and Pilat [44] made and 
extensive study on the same topic and found many numerical relationships. The opacimeter is also 
a test instrument required by the UN regulation n. 24 concerning the approval of compression 
ignition engines [45]. In Ileri et al. [46] a central composite design RSM was applied to a 
four-cylinder turbocharged diesel engine fuelled with canola oil biodiesel. Engine speed and 
injection timing have been used as input parameters, while brake power and torque, BTE, BSFC, 
exhaust gas temperature, light-absorption coefficient and O2, NOx, CO and CO2 concentrations have 
been set as output variables. RSM application has shown a high precision, with a R2 in the range of 
0.926 (light-absorption coefficient) and 0.999 (brake torque). Dhingra et al. [47] have applied a 
central composite design RSM to a single-cylinder diesel engine (with direct-injection system) 
fuelled with diesel-biodiesel blends. Engine load, blending ratio and compression ratio have been 
used as input parameters, while BSFC, smoke opacity and NOx, CO and HC concentrations have 
been set as output variables. RSM application has shown a high precision, with a R2 in the range of 
0.953 (HC) and 0.995 (smoke opacity). Hassan Pour et al. [27] used the RSM to perfume a 
multi-objective optimization of a diesel engine fuelled with a ternary blend of diesel-biodiesel-fusel 
oil. The blend composition, the engine speed (rpm) and the engine load (%) have been used as input 
parameters to assess power, torque, BSFC, and some emission parameters (NOX, UHCs, CO, and 
CO2) of the ICE. Through RSM a blend of 5% fusel oil, 5% biodiesel, and 90% petro-diesel, and an 
engine speed of 2026 rpm at 46 % load were predicted to be optimal. Through the many response 
functions, the same authors also predicted the values of delivered torque (14.2 Nm), power 
(3.37 kW), and the BSFC (356.9 g (kW h)−1). 

These and other [36] major findings from the literature suggest that the application of the RSM 
to study the properties of alternative fuels and their effects on the performance of ICE is strongly 
recommended for optimization and modelling activities, and in particular when the aim is to carry 
out a sensitivity analysis of the input data (e.g., the fuel composition and properties, the engine 
operating conditions) and the output parameters (the ICE performances and emissions). In order to 
apply the RSM in the most adequate way, it is necessary: (i) to choose an experimental design, (ii) to 
fit an adequate mathematical function, and (iii) to evaluate the quality of the engine model in 
relation to the experimental data obtained [36]. If such this procedure is properly applied, 
high-accuracy prediction models can be obtained. 

1.3. Aims and novelty of this study 

The first aim of this study is to demonstrate the effectiveness of a mixed 
experimental-numerical approach, based on the RSM for data processing, in the investigation of the 
operation of a particularly complex system such as an internal combustion engine fuelled with 
different biofuels blends. Indeed, an ICE consists of several devices whose behaviour can change 
according to the properties of the fuel. The interactions between the many possible influencing 
parameters are rather hard to grasp, and it is difficult to define a single or simplified mathematical 
relationship between these parameters and the engine performance and emissions. A first analysis is 
carried out to assess the effect of the different shares of biofuel on the engine performance (torque 
and BSFC). 

Secondly, the present study intends to investigate whether the kinematic viscosity at the 
temperature stated by international norms (40 °C in this case, hence not necessarily linked to the 
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combustion-chamber conditions yet easily and quickly measured with proper equipment) could be a 
useful parameter for indirectly estimating some performance parameters related to the engines of 
agricultural machines. Overall in this study, specific attention has been devoted to the engine toque, 
the hourly fuel consumption, the NOx and CO concentration, and the opacity of the exhaust gases.  

The relevance of this study from a practical point of view is demonstrated by the easy 
application of the models and the simple applicability of the methodology; indeed, few and 
easily-accessible input parameters are required to handle the mathematical relationships presented 
in this work. Also unexperienced users will be able to obtain reliable forecasts of engine performance 
and emissions when an ICE is fuelled with alternative fuel blends without the need to assess the 
detailed and complex behaviour of each single sub-component. By doing so, it will be possible to 
apply this method also to other fuel blends and/or to other CI motors, regardless their type (e.g., 
direct/indirect injection, atmospheric/turbocharged) and size (i.e., light/heavy-duty). 

2. Materials and Methods 

2.1. Experimental setup 

The experimental procedure consisted of several tests on an agricultural tractor engine and 
aimed to record the engine performance as well as the main polluting characteristics of the exhaust 
gas within the full operating-range of the engine. The tests were performed on a “T4020V” farm 
tractor by New Holland Agriculture (Torino, Italy). The machine was equipped with a 4-cylinder 
3200-cm3 diesel engine with direct fuel injection system (Table 2). 

Table 2. Main properties of the New Holland T4020V farm tractor. 

Description Specification 
Engine (manufacturer; type; building year; 

total displacement) 
New Holland; F5A E9484A*A001; 2009; 3200 cm3 

Cylinders (number; configuration) 4; straight 
Fuel-system type  

(features and accessories) 
With: direct injection, rotary fuel-pump, turbocharger, 

intercooler, mechanical speed-regulator 
Nominal gross power at the engine (value, 

engine speed) 
47.7 kW (according to ISO/TR 14396:1996) @ 2300 rpm 

Maximum torque (value; engine speed) 290 Nm @ 1250 rpm 

The tractor was fuelled with five fuels: pure diesel oil, two binary and two ternary blends of 
diesel oil (D), biodiesel (B; Table 3) and bioethanol (E; Table 3).  

Table 3. Main properties of the diesel oil, the biodiesel and the bioethanol used in the tests. 

Fuel Property Value Unit Test method 

Diesel oil 

Density at 15 °C 820.0–845.0 kg m−3 
EN ISO 12185 
EN ISO 3675 

Viscosity at 40 °C 2.0–4.5 mm2 s−1 EN ISO 3104 
Flash point >55 °C EN ISO 2719 

Cetane number >51 - 
EN ISO 5165 

EN 15195 
EN 1614 

Copper strip corrosion (3 h at 50 °C) Class 1 - EN ISO 2160 
Lubricity, correct wear scar 460 μm EN ISO 12156 

Biodiesel 

Density at 15 °C 883.1 kg m−3 EN ISO 3675 
Viscosity at 40 °C 4.1–4.7 mm2 s−1 EN ISO 3104 

Flash point >160 °C EN ISO 3679 
Cetane number >51 - EN ISO 5165 
Water content 210 mg kg−1 EN ISO 12937 
Ester content 98.5 % (on mass) EN 14103 
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Fuel Property Value Unit Test method 

Bioethanol 

Ethanol content 99.3 % (on mass) EN 15721 
Water content 0.150 % (on mass) EN ISO 15489 

Total acidity (expressed as acetic acid) 0.001 % (on mass) EN ISO 15491 
Electrical conductivity 0.45 μS cm−1 EN ISO 15938 

Sulphur content 0.3 mg kg−1 EN ISO 15486 
pH 8.6 - EN 15490 

Specifically, these blends were: B15 (85% D, 15% B in volume), B25 (75% D, 25% B), B15E3 
(82% D, 15% B, 3% E) and B25E3 (72% D, 25% B, 3% E). An external tank was used during these tests 
for rapid fuel-substitution and for the measurement of the instant consumptions; a description of 
such this apparatus is available in [48]. The kinematic viscosity of the fuels involved were measured 
with a “Simple VIS” portable automated viscometer by Cannon Instrument Company (State 
College, PA, USA) [49]. A total of 73 measurements have been performed on the fuel samples (from 9 
to 19 samples per fuel mix at the standard temperature of 40 °C, see Table 4). 

Table 4. Kinematic viscosity of the used fuel blends. 

Denomination of the fuel/blend D (%) B (%) E (%) 
Kinematic viscosity at 40 °C (mm2 s−1) 

Mean value Std. dev. 
D100* 100 0 0 2.936 0.148 

B15 85 15 0 2.912 0.062 
B25 75 25 0 3.265 0.131 

B15E3 82 15 3 3.073 0.129 
B25E3 75 25 3 3.264 0.270 

* pump diesel oil. 

During the tests at the Power Take-Off-dynamometer (PTO-dyno), the following variables were 
measured: 

• the rotational speed, the torque at the rear PTO of the tractor and the hourly fuel 
consumption; 

• the NOx concentration (ppm), the CO concentration (ppm) and the opacity (m−1) of the 
exhaust gases. 

Each test at the dyno started only after engine warm-up and included a classic test as prescribed 
by the Organization for Economic Co-operation and Development (OECD-like bench test) with the 
fuel pump rack fully opened [50], i.e. a test starting from the maximum engine speed with a rising 
brake-force controlled by the experimenters. Although the wide-open throttle prescription does not 
correspond to the most common operation mode of an engine, this test condition is a usual 
prescription also in international norms (ECE R24 [45], ECE R120 [51], SAE J1349 [52]), aimed at 
obtaining experimental data that are easily reproducible and fully comparable. Thanks to an 
instantaneous reading of the PTO speed, it was possible to modulate the braking force applied by 
the dyno so as to stabilize the tractor at six speeds of rotation (300-400-500-600-700-800 rpm at the 
PTO, corresponding to 822-1096-1370-1644-1918-2192 rpm at the engine), controlled by the dyno. 
Each operating condition was kept constant for at least 2 minutes to allow the gas analyser 
instruments to collect a sufficient number of measurements in steady-state conditions. A total of 30 
experimental cases were studied, corresponding to six different speeds per each of the five 
above-listed fuel blends. The trials were all performed on the same day to have minimal influencing 
effects of the external environmental conditions, i.e.: an atmospheric pressure of 99 kPa, an ambient 
temperature of 301 K, a relative humidity of 42% (hence the air-intake correction factor according to 
[53] is 0.9788). All the measurements were performed thanks to the mobile testing equipment for 
agricultural tractors that is part of the “Laboratory for Agroforestry Innovation” of the Free 
University of Bozen-Bolzano. In particular: 
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a “SIGMA 50 Mobile” electric-generator PTO-dyno by N. J. Froment & Co. Ltd. 
(Easton-on-the-Hill, East Northamptonshire, UK) [54] was used to measure the engine torque and 
power at the above-mentioned rotational speeds (Figure 1);  

• the NOx and CO concentration in the exhaust gases [55] at full-load and at six different 
speeds was measured with a “Vario Plus Industrial” gas analyser by MRU Instruments 
(Houston, TX, USA) [56]; the gas samples (360 in total; 12 per each of the 30 fuel and speed 
combinations of values) were taken only after the engine speed was stable at each set 
value; 

• the smoke opacity of the exhaust gases (related to the soot measured by the filter smoke 
number [43,44]) was measured through a “OpTrans 1600” optical Diesel smoke-meter by 
MRU Instruments [45,56], conforming to NF R 10-025, PTB EO 18-09, ISO 11614 draft and 
ECE R24, Annex 8/9 specifications; also in this case, the gas samples (90 in total; three per 
each of the 30 fuel-and-speed combinations of values) were taken only after the engine 
speed was stable at each set value; the output of this instrument, based on the photometric 
absorbance principle, is a measurement of the smoke density expressed as absorption 
coefficient from 0.00 to 9.99 m−1. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 1. Examples of outputs from the PTO-dyno during a (speed-controlled) manual test on the 
New Holland T4020V farm tractor fuelled with pure pump diesel oil (D100); (top) temporal trends of 
PTO speed (a), torque (b) and power (c); (bottom) positioning of the experimental points in a “torque 
vs. speed” (d) and “power vs. speed” space (e). 
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It is worth mentioning that the emissions of NOx and CO are supplied by the measurement 
equipment in terms of ppm on a volume basis [12,24,46,57–60]. The data elaboration and the 
following RSM have been carried out using the data with this measurement unit rather than 
g (kW h)−1, which is a quantity that can supply an indication of the emissions in compliance also with 
the indications of the international norms on pollutants (EURO, TIER). If not disposing of a mass 
flowmeter for the exhaust gases, it is however possible to have an indirect indication of the 
emissions in g (kW h)−1. The conversion procedure between ppm and g (kW h)−1 is rather 
straightforward once the operating conditions and the power output of the engine are known, as 
reported in the results section of this work. Specifically, a paper by Pilusa et al. [61] supplies the 
correlations required for the conversion and indicates some practical conversion factors for 
heavy-duty diesel engines such as the engines equipping agricultural machines. 

2.2. The Response Surface Methodology 

One of the key points of this experimental procedure is to avoid any specific modification to the 
power unit when the fuelling is changed, hence no re-calibration of the mechanical and of the 
exhaust gas cleaning after-treatment systems have been performed in the tested tractor. Since the 
engine responses are not directly proportional to the fuel feed change, it is not possible to define 
direct analytical correlations based on the physics of the system. Therefore, having simple 
mathematical relationships at the users’ disposal to assess the machine outputs in case of use of 
alternative fuel blends can be very interesting from a practical point of view. In order to assess and 
overcome these limitations, a very practical but effective methodology based on a statistical analysis 
was adopted. Specifically, for each of the investigated variables, an interpolating function was 
derived to estimate the value of the independent variables (here: the engine torque, the hourly 
consumptions, the NOx and CO concentration and the opacity of the exhaust gases) by using the 
values of the dependent variables. From a formal point of view, the final formulation, and hence the 
mathematical relationships among the quantities, is completely independent from the physics of the 
represented process, being mainly oriented to obtain numerically-acceptable results within the 
validity domain and therefore a reliable prediction ability. 

All the collected data concerning the mechanical and environmental performances of the engine 
have been elaborated statistically. After an Analysis of Variance (ANOVA) test, aimed at 
highlighting the parameters of influence on the above-indicated variable (response), the subsequent 
application of the Response Surface Methodology (RSM) allowed the calculation of the regression 
function coefficients that describe the effects of the statistically-significant independent variables on 
the response [62] (Figure 2).  
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Figure 2. General procedure of use of experimental data to build a model later useful to indirectly 
forecast the values of an independent variable y, given the values of m dependent variables xi. 
(parallelograms/rectangles: input/output quantities; ellipses: tools involved in the computations). 

The RSM is a very effective numerical tool that allows the calculation of an explicit polynomial 
regression-function from a set of input data that is the best approximation, in a limited validity 
domain, of the real function governing the phenomenon under study [63–67]. As opposed to other 
mathematical tools such as artificial neural networks [68], the RSM gives as a result an explicit 
polynomial function that is the first part of the Taylor series of an unknown real function f(xi). This 
polynomial function can be used to study and/or optimize a system by making some quantitative 
predictions about the involved quantities. Design-Expert 7.0.0 software (Stat-Ease, Minneapolis, 
MN, USA) was used for these calculations. 

If y and xi are, respectively, a generic response (i.e., an independent variable) and a generic 
numerical factor (i.e., a dependent variable), non-coded (i = 1 to m, with m the number of 
investigated variables; m ≥ 1), a0 is the interception coefficient, and ai, aii, aiii, aij and aijk (i ≠ j ≠ k) are 
respectively the coefficients of the linear, quadratic, cubic, 2nd-order and 3rd-order interaction terms, 
the most generic regression model used in RSM (i.e., a “full-cubic model”) is: 

( ) ( ) 
≤≤≤≤≤≤≤=

+++===
mkji

kjiijk
mji

jiij

m

i
iiii xxxaxxaxaaxfm  ixy

111
0to1;

 
(1)

For the present study, after analysing the data, the software automatically selected for most of 
the models a (multi-) linear 2nd-order model with interactions (more precisely, a “full-quadratic 
model”) as starting point to build the mathematical model for each of the investigated responses: 

( ) ( ) 
≤≤≤=

++===
mji

jiij

m

i
iiii xxaxaaxfm  ixy

11
0to1;

 
(2)

The validity domain of each polynomial function f is given by the lower and upper values of 
each independent variable xi (i = 1 to m) and, therefore, is the following hyperspace: 

( ) ( ) m
m

i
ii xxfDom ℜ⊆= ∏

=1
max,min, ;

 
(3)

The ANOVA, which is part of this methodology, allows the analyst to identify the most 
significant factors and polynomial terms, thus operating a partial simplification of the resulting 
polynomial models based on the p-values (threshold value: 0.05). 

2.3. System modelling 

The need to introduce here an approach based on the RSM rather than on other tools (e.g., 
numerical simulations) follows the awareness that the determination of the operative point of a 
generic machine equipped with an internal combustion engine is not simple since the power 
conversion occurring inside the combustion chamber is very complex (Figure 3). Indeed, numerical 
simulations require more technical and physical details to model the involved phenomena. 
Indicatively, it is necessary to know and to model all the parameters indicated in Figure 3, so this 
approach requires a complete knowledge of the machine, including several parameters typically 
known only by the manufacturer or by disassembling the machine. Instead, RSM allows to easily 
obtain a precise prediction of the value of some quantities that represent the global expression of the 
operation of the machine (e.g., the torque or the NOx emissions). Indeed, by writing a sort of 
(polynomial) “transfer function” that characterizes the system “tractor” under consideration (i.e., 
with its specific engine, auxiliaries, settings, maintenance history, age), it is possible to predict the 
outputs even in correspondence to input values different from the values used to set up the transfer 
functions coefficients (i.e., the test conditions) and plot complete output curves/surfaces. While the 
approach and its application procedure are absolutely general and applicable to every farm tractor, 
the so-developed polynomial models, characterized by a series of numerical features (i.e., the 
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polynomial order, the selected and remaining terms after a backward elimination leaded by an 
ANOVA, the values of each coefficient) are specific for the considered tractor.  

 
Figure 3. Detailed list of all technical characteristics, machine settings and other quantities 
(independent variables; on the left) fixing the operative point of a tractor involved in performing a 
task, defined by the engine speed and a certain level of power delivered by the engine, of 
consumptions, of CO, NOx and particulate matter in its exhaust gases (dependent variables; on the 
right). 

Much of the variability of outputs that can be recorded during the experiments on real 
machines is due to a variety of structural characteristics of the machines under test. By carrying out 
more tests on the same day and on the same machine as in this study, many parameters of influence 
(specifically: the engine structural characteristics, the fuel system settings, the environmental 
conditions) remain constant. Furthermore, the test protocol of OECD standards reduces the 
variability of the operating settings as it requires the fuel pump rack fully-opened (i.e., the 
accelerator position at 100%) to be able to detect the properly-said “engine characteristic curves”, i.e. 
the limit curves of the motor in its operating range. 
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Among all possible factors of influence on the operating point of a tractor, this study aimed at 
evidencing the effect of the fuel mix composition by varying the operative conditions in terms of 
applied load/engine speed (numerical factor controllable by the experimenters through the 
PTO-dyno). Specifically, the here-reported analyses considered the following characteristics to 
characterize the fuel blends: 

1. The percentage parts of the three base fuel-components (numerical factors controllable by 
the experimenters; biodiesel ranges from 0% to 25%, bioethanol can assume only two 
possible values: 0% or 3% to avoid damages to the fuel system and the engine); please 
notice that the percentages of the three components composing the fuel mixes are not fully 
independent from each other as their sum must be always 100; therefore, one of these was 
excluded by the analyses as it is not properly an “independent variable”; the proposed 
numerical models have therefore only two of three fuel percentages; 

2. The absolute kinematic viscosity, measured at the reference temperature of 40 °C, as 
prescribed by international standards [69–73]. 

It is worth mentioning that the reference temperature for viscosity, although quite far from the 
injection temperature of the fuel in the combustion chamber, allows the comparison among different 
mixes and the formulation of hypothesis on its influence in the spray formation, hence on the 
performances. Indeed, viscosity at the reference temperature of 40 °C is used in the characterization 
of all the fuel samplings, thus granting a metrological uniformity. Then again, the fuel viscosity in 
the injection conditions is not known; it is not the object of any measurement in the literature and it 
is hardly measurable. Even if available, it would not be significant in the construction of an empirical 
predictive model. Vice versa, the temperature at 40 °C can be measured with commonly-available 
instruments. A total of 30 experimental cases were investigated: six engine speeds with five 
different fuels/viscosity values. 

2.4. Numeric models of the system making use of the blend composition 

During the PTO tests, the system tractor, fuelled with one of the presented fuels, stabilizes on a 
different engine speed every time a new value of the load (expressed as braking torque) is applied by 
the dyno; therefore, the following equation holds: 

( ) ( ) ( ) ( )[ ]%;%;Nmrpm 1 EBTfn =  (4) 

Thanks to the subsequent elaborations of the quadruple [n(rpm);T(Nm);B(%);E(%)] made with 
RSM, it is possible to obtain a first model of the torque as a function of the engine speed and the 
blend composition (expressed through its percentages of biodiesel and ethanol), to be used to make 
reliable forecasts: 

( ) ( ) ( ) ( )[ ]%;%;rpmNm 1 EBngT =  (5)

During the same experiments at the PTO-dyno, the hourly consumption, the NOx 
concentration, the CO concentration and the opacity of the exhaust gases by varying the value of the 
load (i.e., braking torque) applied by the dyno have also been detected, formally stating the 
following correlations: 

( ) ( ) ( ) ( )[ ]%;%;Nmhg 2
1 EBTfch =⋅ −  (6)

( ) ( ) ( ) ( )[ ]%;%;Nmppm 3 EBTfNOx =  (7)

( ) ( ) ( ) ( )[ ]%;%;Nmppm 4 EBTfCO =  (8)

( ) ( ) ( ) ( )[ ]%;%;Nmm 5
1 EBTfOpacity =−  (9)
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Considering the expression for the torque (Equation 5) above, it is possible to correlate each of 
the above-listed variables directly with the engine speed, thus raising the predictive capabilities of 
the so-created models by using a parameter very easy to detect:  

( ) ( ) ( ) ( )[ ]
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At the end of these elaborations, this approach allows to use a simple tool to infer the desired 
outputs, as represented in the following Figure 4. 

 
Figure 4. Variables considered in the assessment of the performances of the tested tractor (model 
including the composition of the fuel blends). 
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The blend viscosity at 40 °C depends on the blend composition and can be generically 
expressed by a further equation by using, as independent variables, the percentages of biodiesel and 
bioethanol in the blend, as follows: 

( ) ( ) ( )[ ]%;%smm 6
12 EBf=⋅ −ν  (14)

One of the key aspects of this study is to propose a correlation between the four explicated 
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Figure 5. Variables considered in the assessment of the performances of the tested tractor (models 
including the kinematic viscosity of the fuel blends). 
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2.6. Validation of numerical models 

Analogously to what is commonly done for neural networks [68,74], the acquired data were 
randomly subdivided into two subsets: 80% of the experimental cases (i.e., 24 cases) were used for 
building a first set of models (one per response), the remaining 20% of the experimental cases (i.e., 6 
cases) were used to verify the predictive capabilities of the different models built from the other 24 
cases. By doing so, it was possible to validate the proposed approach also for the present study (i.e., 
on data of an engine fuelled with biofuel blends). The different models were evaluated in terms of: 

1. fitting of the initial set of data (through the coefficient of determination, the adjusted 
coefficient of determination, the average relative fitting error, the mean squared error) and  

2. predictive capabilities on the values of the several responses for the six verification cases 
(through the average relative prediction error and the mean squared error). 

Below there are the six experimental cases randomly chosen for the validation of the models 
(control cases). Each is identified by a 3-tuple listing the engine speed (rpm), the biodiesel content 
(%), the bioethanol content (%), or by the equivalent 2-tuple listing the engine speed (rpm), the 
kinematic viscosity at the reference temperature of 40 °C (mm2 s−1): 

• (822; 15; 0) ≡ (822; 
2.912), i.e. a fuelling with B15 at 822 rpm; 

• (1096; 0; 0) ≡ 
(1096; 2.936), i.e. a fuelling with D100 at 1096 rpm; 

• (1370; 15; 3) ≡ 
(1370; 3.073), i.e. a fuelling with B15E3 at 1370 rpm; 

• (1644; 25; 0) ≡ 
(1644; 3.265), i.e. a fuelling with B25 at 1644 rpm; 

• (1918; 25; 3) ≡ 
(1918; 3.264), i.e. a fuelling with B25E3 at 1918 rpm; 

• (2192; 25; 3) ≡ 
(2192; 3.264), i.e. a fuelling with B25E3 at 2192 rpm. 

The relative error of fitting or prediction (for the six control cases) for the i-th case (identified by 
the 4-tuple [n(rpm);T(Nm);B(%);E(%)] or 3-tuple [n(rpm);T(Nm);v(mm2s-1)] has been calculated as 
follows: 

( ) 100%, ⋅
−

=
i

ii
ir m

mp
ε  (21)

where: 

• pi is the 
prediction of the model for the selected quantity in the i-th case; 

• mi is the 
experimental measurement of the selected quantity in the i-th case. 

After validating the method, the RSM was applied once again to the whole dataset (30 cases) to 
give the reader an extended, more complete, model for each of the investigated responses (Figure 6). 
Then these models were also evaluated using the same metrics (e.g., the coefficient of determination 
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and the average relative fitting error) to have an indication of the enhanced fitting capabilities given 
by the addition of six more points to the initial set of 24. 

3. Results and Discussion 

The following paragraphs show the final correlations found with the proposed numerical 
model. The mathematical relationships are obtained using the set of selected terms resulting from 
the systematic backward-elimination of not-significant terms (one by one). This process was 
performed as follows: after each single elimination an ANOVA was performed, and the new 
p-values were calculated. On such basis it was possible to decide whether to proceed with the 
selection of factors until a set of solely significant factors which would then appear in the final 
regression model. 

 
Figure 6. Procedure followed in the application of the Response Surface Methodology (RSM) 
approach to the experimental data. 

3.1. Mechanical and environmental outputs as a function of the fuel blend composition 

3.1.1. Engine torque as a function of the fuel blend composition 

The following Table 5 shows the numerical regression models, based on 24 and 30 experimental 
cases respectively, as resulted from the backward selection of the terms forming the most complete 
model handled by RSM. The equations are presented in terms of actual factors, i.e. the terms are 
used without any conversion, scaling or non-dimensionalization. The following Figures 7 and 8 give 
a graphical (2D/3D) representation of these equations, allowing the visualization of the trends and 
absolute values. 

Table 5. Main data concerning the two numerical models (respectively based on 24 and 30 cases) and 
the predictions of the models in six selected cases for the engine torque. 
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10−3 ∙ n [rpm] −6.15737 ∙ 10−5 ∙ {n 
[rpm]}2 

 

[rpm]−6.24263 ∙ 10−5 ∙ {n[rpm]}2 

Fitting (on 
available 

cases) 

R2 0.9918 0.9930 (+0.0012) 
Adj. R2 0.9901 0.9918 (+0.0017) 

Ave. 
error 

0.07% 0.00% (−0.07%) 

Mean 
sq. er. 

0.01% 0.01% (+0.00%) 

Prediction (on 
6 cases) 

Ave. 
error 

0.38% - 

Mean 
sq. er. 

0.01% - 

Within the validity domains, the two resulting numerical models can be used to predict the 
engine torque at the different rotational speeds and varying the fuel mix composition by simply 
substituting the values of the input quantities. This is what has been done with the first model and 
the six control cases. 

  

  
Figure 7. Contour plots (top) and 3D-graphs (bottom) of the engine torque as a function of the 
biodiesel percentage and of the engine speed referred to the 1st model (24 cases), with the 0% (left) 
and the 3% (right) of bioethanol in the blend (NB: the values of torque are reported as labels directly 
on the contours). The same pictures show also the positions of the experimental measurements (black 
dots positioned within the investigated hyperspace; notice that many points are positioned under the 
represented surface and hence are not visible). 



Energies 2019, 12, 2287 18 of 46 

 

  

  
Figure 8. Contour plots (top) and 3D-graphs (bottom) of the engine torque as a function of the 
biodiesel percentage and of the engine speed referred to the 2nd model (30 cases), with the 0% (left) 
and the 3% (right) of bioethanol in the blend (NB: the values of torque are reported as labels directly 
on the contours). The same pictures show also the positions of the experimental measurements (black 
dots positioned within the investigated hyperspace; notice that many points are positioned under the 
represented surface and hence are not visible). 

Both the models resulting from the backward selection of terms are quadratic even if there is 
only one quadratic term related to the engine speed. For this reason, by observing Figure 7 and 
Figure 8, the resulting response surface is a single-curvature surface. 

With regards to only the cases used for the model building phase, the predictive capability of 
both the models is very high: the R2 is higher than 0.9918 and the adjusted R2 is higher than 0.9930. 
When considering the six control cases excluded in the building of the first model, it is possible to 
confirm the very high predictive capability of this model: for such cases the average error (0.38%) 
and the mean square error (0.01%) are very low. 

The prediction of the engine power at the different rotational speeds and the variation of the 
fuel mix composition is simple, starting from the same equation of the torque. The predicted value of 
the torque should be multiplied by the engine speed expressed in rad s−1. For the above-mentioned 
reasons, no model for the power has been calculated. 

3.1.2. Hourly fuel consumption at full load as a function of the composition of the fuel blends 

The following Table 6 shows the numerical regression models, respectively based on 24 and 30 
experimental cases, as resulted from the backward selection of the terms forming the most complete 
model handled by RSM. The equations are presented in terms of actual factors, i.e. the terms are 
used without any conversion, scaling or nondimensionalization. The following Figure 9 and Figure 
10 give a graphical (2D/3D) representation of these equations, allowing the visualization of the 
trends and absolute values. 

Within the validity domains, the two resulting numerical models can be used to predict the 
engine hourly fuel consumption at the different rotational speeds and the variation of the fuel mix 
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composition by simply substituting the values of the input quantities. This is what has been done 
with the first model and the six control cases. 

Table 6. Main data concerning the two numerical models (respectively based on 24 and 30 cases) and 
the predictions of the models in six selected cases for the hourly fuel consumption at full load. 

Quantity Model 
nr. 1 (on 24 cases) nr. 2 (on 30 cases) 

Regression equation ch[g h−1] = −561.22973 +73.05882 ∙ 
B[%]−725.37929 ∙ E[%] +8.73898 ∙ 
n[rpm] +14.39175 ∙ B[%] ∙ 
E[%]−0.041545 ∙ B[%] ∙ n[rpm] 
+0.56033 ∙ E[%] ∙ n[rpm] −1.59042 ∙ 
10−3 ∙ {n[rpm]}2 

ch[g h−1] = −1531.53212 +96.13334 ∙ 
B[%]−229.40642 ∙ E[%] +10.17610 ∙ 
n[rpm] −0.061286 ∙ B[%] ∙ n[rpm] 
+0.36366 ∙ E[%] ∙ n[rpm] −2.02194 ∙ 
10−3 ∙{ n[rpm]}2 

Fitting 
(on 
available 
cases) 

R2 0.9248 0.9040 (−0.0208) 
Adj. R2 0.8918 0.8790 (−0.0128) 
Ave. error 0.50% 0.00% (−0.50%) 
Mean sq. er. 0.41% 0.35% (−0.06%) 

Prediction 
(on 6 
cases) 

Ave. error 2.48% - 
Mean sq. er. 0.92% - 

 

  

  
Figure 9. Contour plots (top) and 3D-graphs (bottom) of the hourly fuel consumption at full load as a 
function of the biodiesel percentage and of the engine speed referred to the 1st model (24 cases), with 
the 0% (left) and the 3% (right) of bioethanol in the blend (NB: the values of hourly consumption are 
reported as labels directly on the contours). The same pictures show also the positions of the 
experimental measurements (black dots positioned within the investigated hyperspace; notice that 
many points are positioned under the represented surface and hence are not visible). 
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Figure 10. Contour plots (top) and 3D-graphs (bottom) of the hourly fuel consumption at full load as 
a function of the biodiesel percentage and of the engine speed referred to the 2nd model (30 cases), 
with the 0% (left) and the 3% (right) of bioethanol in the blend (NB: the values of hourly consumption 
are reported as labels directly on the contours). The same pictures show also the positions of the 
experimental measurements (black dots positioned within the investigated hyperspace; notice that 
many points are positioned under the represented surface and hence are not visible). 

Both the models resulting from the backward selection of terms are quadratic, even with a 
different number of terms. In particular, the 24-case model has a term more, related to the interaction 
between biodiesel and bioethanol and this is also responsible for the slightly high value of R2 and 
adjusted R2 (the differences are however very low: less than 0.02). 

With regards to only the cases used for the model building phase, the predictive capability of 
both the models is high: the R2 is higher than 0.9040 and the adjusted R2 is higher than 0.8790. By 
looking at the six control cases excluded in the building of the first model, it is possible to confirm a 
good predictive capability of this model: for those cases, the mean square error is 0.92% and the 
average error is 2.48%. Even if it is not as low as for other investigated responses, it should be 
considered that it is however lower than 5%, which is commonly considered the threshold for the 
acceptability of every measurement and predictive system. 

Analogously to the engine power, which can be calculated from the torque prediction, the 
prediction of the brake specific fuel consumption at the different rotational speeds and varying the 
fuel mix composition can be obtained from the same equation of the hourly consumption. For the 
explained reason, no model for the BSFC has been calculated. 

3.1.3. NOx concentration in the exhaust gases as a function of the composition of the fuel blends 

The following Table 7 shows the numerical regression models, respectively based on 24 and 30 
experimental cases, as resulted from the backward selection of the terms forming the most complete 
model handled by RSM. The equations are presented in terms of actual factors, i.e. the terms are 
used without any conversion, scaling or nondimensionalization. The following Figure 11 and Figure 
12 give a graphical (2D/3D) representation of these equations, allowing to visualize the trends and 
absolute values. 
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Within the validity domains, the two resulting numerical models can be used to predict the 
engine NOx concentration at the different rotational speeds and the variation of the fuel mix 
composition by simply substituting the values of the input quantities. This is what has been done 
with the first model and the six control cases. 

Both the models resulting from the backward selection of terms have a quadratic form with two 
of the factors (biodiesel content, engine speed) raised to the second power. The resulting response 
surface presents double curvature in a shape resembling a roofing-tile. The values of R2 and 
adjusted R2 are very high for both the models (24 and 30 cases) and approximately at the same 
values (about 0.982).  

Table 7. Main data concerning the two numerical models (respectively based on 24 and 30 cases) and 
the predictions of the models in six selected cases for the NOx concentration in the exhaust gases. 

Quantity 
Model 

nr. 1 (on 24 cases) nr. 2 (on 30 cases) 

Regression equation 

NOx[ppm] = +500.71510 −0.61435 ∙ 
B[%] +25.06639 ∙ E[%] +0.13109 ∙ 

n[rpm] −1.77110 ∙ B[%] ∙ 
E[%]−4.43123 ∙ 10−4 ∙ B[%] ∙ n[rpm] 
−3.82978 ∙ 10−3 ∙ E[%] ∙ n[rpm] 

+0.21606 ∙ {B[%]}2 −1.25658 ∙ 10−4 ∙ 
{n[rpm]}2 

 

NOx[ppm] = +488.75020 −0.37219 ∙ 
B[%] +25.65112 ∙ E[%] +0.14445 ∙ 

n[rpm] −1.81991 ∙ B[%] ∙ 
E[%]−5.89491 ∙ 10−4 ∙ B[%] ∙ n[rpm] 
−4.67969 ∙ 10−3 ∙ E[%] ∙ n[rpm] 

+0.22224 ∙ {B[%]}2  −1.29296 ∙ 10−4 ∙ 
{n[rpm]}2 

Fitting (on 
available 

cases) 

R2 0.9825 0.9820 (−0.0005) 
Adj. 
R2 0.9820 0.9816 (−0.0004) 

Ave. 
error 0.36% 0.11% (−0.25%) 

Mean 
sq. er. 0.17% 0.15% (−0.02%) 

Prediction 
(on 6 cases) 

Ave. 
error 1.40% - 

Mean 
sq. er. 

0.25% - 
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Figure 11. Contour plots (top) and 3D-graphs (bottom) of the NOx concentration as a function of the 
biodiesel percentage and of the engine speed referred to the 1st model (24 cases), with the 0% (left) 
and the 3% (right) of bioethanol in the blend (NB: the values of NOx are reported as labels directly on 
the contours). The same pictures show also the positions of the experimental measurements (black 
dots positioned within the investigated hyperspace; notice that many points are positioned under the 
represented surface and hence are not visible). 

  

  
Figure 12. Contour plots (top) and 3D-graphs (bottom) of the NOx concentration as a function of the 
biodiesel percentage and of the engine speed referred to the 2nd model (30 cases), with the 0% (left) 
and the 3% (right) of bioethanol in the blend (NB: the values of NOx are reported as labels directly on 
the contours). The same pictures show also the positions of the experimental measurements (black 
dots positioned within the investigated hyperspace; notice that many points are positioned under the 
represented surface and hence are not visible). 

Firstly, this means that the predictive capability of both the models is high with respect to only 
the cases used for the model-building phase. Secondly, concerning the very small difference of R2 
values, this means that the six control cases are well aligned with the calculated response surface and 
that the trend has been completely respected when including also those cases in the second model. 
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By looking at the same six control cases, it is possible to confirm the very high predictive 
capability of the first model: indeed, for those cases the mean square error is 0.17% and the average 
error is 0.36%, both essentially negligible. 

3.1.4. CO of the exhaust gases as a function of the composition of the fuel blends 

The following Table 8 shows the numerical regression models, respectively based on 24 and 30 
experimental cases, as resulted from the backward selection of the terms forming the most complete 
model handled by RSM. The equations are presented in terms of actual factors, i.e. the terms are 
used without any conversion, scaling or non-dimensionalization. In this case the multilinear model 
is given as a function of the natural logarithm of the CO concentration, to better handle the high ratio 
between the minimum and the maximum experimental values. The following Figure 13 and Figure 
14 give a graphical (2D/3D) representation of these equations, allowing the visualization of the 
trends and absolute values. 

Within the validity domains, the two resulting numerical models can be used to predict the 
engine CO concentration at the different rotational speeds and the variation of the fuel mix 
composition by simply substituting the values of the input quantities. This is what has been done 
with the first model and the six control cases. 

Table 8. Main data concerning the two numerical models (respectively based on 24 and 30 cases) and 
the predictions of the models in six selected cases for the CO concentration in the exhaust gases. 

Quantity 
Model 

nr. 1 (on 24 cases) nr. 2 (on 30 cases) 
Regression equation Ln(CO[ppm]) = +20.34397 −9.60882 ∙ 

10−3 ∙ B[%]−0.026016 ∙ E[%]−0.017564 ∙ 
n[rpm] +4.31472 ∙ 10−3 ∙ B[%] ∙ E[%] 
+5.77145 ∙ 10−6 ∙ B[%] ∙ n[rpm] −4.00363 
∙ 10−4 ∙ {B[%]}2 +4.82341 ∙ 10−6 ∙ {n[rpm]}2 

Ln(CO[ppm]) = +20.35606 −5.47853 ∙ 
10−3 ∙ B[%]−0.077395 ∙ E[%]−0.017594 ∙ 
n[rpm] +5.69115 ∙ 10−3 ∙ B[%] ∙ E[%] 
+4.64820 ∙ 10−6 ∙ B[%] ∙ n[rpm] −4.26751 
∙ 10−4 ∙ {B[%]}2 +4.83437 ∙ 10−6 ∙ {n[rpm]}2 

Fitting (on 
available 
cases) 

R2 0.9879 0.9869 (+0.001) 
Adj. R2 0.9876 0.9866 (+0.001) 
Ave. error −1.46% −1.84% (+0.38%) 
Mean sq. er. 3.32% 3.18% (+0.14%) 

Prediction 
(on 6 cases) 

Ave. error −0.91% - 
Mean sq. er. 4.47% - 
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Figure 13. Contour plots (top) and 3D-graphs (bottom) of the CO concentration as a function of the 
biodiesel percentage and of the engine speed referred to the 1st model (24 cases), with the 0% (left) 
and the 3% (right) of bioethanol in the blend (NB: the values of CO are reported as labels directly on 
the contours). The same pictures show also the positions of the experimental measurements (black 
dots positioned within the investigated hyperspace; notice that many points are positioned under the 
represented surface and hence are not visible). 

  

  
Figure 14. Contour plots (top) and 3D-graphs (bottom) of the CO concentration as a function of the 
biodiesel percentage and of the engine speed referred to the 2nd model (30 cases), with the 0% (left) 
and the 3% (right) of bioethanol in the blend (NB: the values of CO are reported as labels directly on 
the contours). The same pictures show also the positions of the experimental measurements (black 
dots positioned within the investigated hyperspace; notice that many points are positioned under the 
represented surface and hence are not visible). 

Due to the very high ratio between the minimum and the maximum experimental values 
(respectively: 90 and 10,597 ppm), the method and the software suggest operating a transformation 
of the response data before performing the ANOVA and to build the model in the same form 
(polynomial). Consequently, the models give an estimation of the natural logarithm of the CO 
concentration in correspondence at an n-tuple of values for the involved factors. The subsequent 
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calculation of the CO concentration is simple, involving a rising to the power of the Napier's 
constant. Apart from this initial transformation, both the models resulting from the backward 
selection of terms have a quadratic form with two of the factors (biodiesel content and engine speed) 
raised to the second power. The effect of the biodiesel content on the global shape of the surface is 
however inferior with respect to the engine speed, so the curvature due to the biodiesel content is 
very small. 

The values of R2 and adjusted R2 are very high for both the models (24 and 30 cases) and 
substantially at the same levels (about 0.987). This means, firstly, that the predictive capability of 
both models is high with regards to only the cases used for the model building phase. Secondly, 
concerning the very small difference of R2 values, this means that the six control cases are on average 
well aligned with the calculated response surface, and the general trend has been completely 
followed when including also those cases in the second model. By looking at the same six control 
cases, it is possible to notice an acceptable predictive capability of the first model: indeed for those 
cases, the average error is −0.91%, essentially negligible, but the mean squared error has a bit higher 
value (4.47%), which is still acceptable but close to the threshold of 5% commonly considered for 
predictive models. This means that the deviations of the predicted values from the real values are 
equally distributed above and below the zero, and nevertheless quite significant in absolute terms. It 
is possible to therefore conclude that the model gives a good approximation of the trend of the 
plotted quantity (the CO concentration, in this case), but should be used with caution in formulating 
specific predictions. Nevertheless, this does not constitute a problem in the present case since it 
means that the model is fully reliable to draw conclusions concerning the influence of the factors on 
this response. 

3.1.5. Opacity of the exhaust gases as a function of the composition of the fuel blends 

The following Table 9 shows the numerical regression models, respectively based on 24 and 30 
experimental cases, as resulted from the backward selection of the terms forming the most complete 
model handled by RSM. The equations are presented in terms of actual factors i.e., the terms are used 
without any conversion, scaling or non-dimensionalization. In this case the multilinear model is 
given as a function of the natural logarithm of the opacity, to better handle the high ratio between 
the minimum and the maximum experimental values.  

Table 9. Main data concerning the two numerical models (respectively based on 24 and 30 cases) and 
the predictions of the models in six selected cases for the opacity of the exhaust gases. 

Quantity 
Model 

nr. 1 (on 24 cases) nr. 2 (on 30 cases) 

Regression equation 

Ln(Opacity[m−1]) = +11.84735 −0.21196 ∙ B[%] 
+0.60734 ∙ E[%]−0.016407 ∙ n[rpm] −0.020619 ∙ 

B[%] ∙ E[%] +2.41216 ∙ 10−5 ∙ B[%] ∙ n[rpm] 
+6.11103 ∙ 10−3 ∙ {B[%]}2 +4.50634 ∙ 10−6 ∙ 

{n[rpm]}2 
 

Ln(Opacity [m−1]) =+11.44037 −0.14504 
∙ B[%] +0.61544 ∙ E[%]−0.016037 ∙ 
n[rpm] −0.023313 ∙ B[%] ∙ E[%] 

+4.80098 ∙ 10−3 ∙ {B[%]}2 +4.43092 ∙ 10−6 ∙ 
{n[rpm]}2 

Fitting (on 
available 

cases) 

R2 0.9242 0.8993 (−0.0249) 
Adj. 
R2 

0.9159 0.8922 (−0.0237) 

Ave. 
error 

−5.60% −9.48% (−3.88%) 

Mean 
sq. er. 

18.21% 22.04% (+3.83%) 

Prediction 
(on 6 cases) 

Ave. 
error 

5.62% - 

Mean 
sq. er. 

40.07% - 
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Within the validity domains, the two resulting numerical models can be used to predict the 
exhaust gas opacity at the different rotational speeds and the variation of the fuel mix composition 
by simply substituting the values of the input quantities. This is what has been done with the first 
model and the six control cases. The following Figures 15–17 give a graphical (2D/3D) representation 
of these equations, allowing the visualization of the trends and absolute values. 

 

  

  
Figure 15. Contour plots (top) and 3D-graphs (bottom) of the logarithm of the opacity of the exhaust 
gases as a function of the biodiesel percentage and of the engine speed referred to the 1st model (24 
cases), with the 0% (left) and the 3% (right) of bioethanol in the blend (NB: the values of the 
logarithm of the opacity are reported as labels directly on the contours). The same pictures show also 
the positions of the experimental measurements (black dots positioned within the investigated 
hyperspace; notice that many points are positioned under the represented surface and hence are not 
visible). 
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Figure 16. Contour plots (top) and 3D-graphs (bottom) of the logarithm of the exhaust gas opacity as 
a function of the biodiesel percentage and of the engine speed referred to the 2nd model (30 cases), 
with the 0% (left) and the 3% (right) of bioethanol in the blend (NB: the values of the logarithm of the 
opacity are reported as labels directly on the contours). The same pictures show also the positions of 
the experimental measurements (black dots positioned within the investigated hyperspace; notice 
that many points are positioned under the represented surface and hence are not visible). 

  

  
Figure 17. Contour plots (top) and 3D-graphs (bottom) of the exhaust gas opacity as a function of the 
biodiesel percentage and of the engine speed referred to the 2nd model (30 cases), with the 0% (left) 
and the 3% (right) of bioethanol in the blend (NB: the values of opacity are reported as labels directly 
on the contours). The same pictures show also the positions of the experimental measurements (black 
dots positioned within the investigated hyperspace; notice that many points are positioned under the 
represented surface and hence are not visible). 

Due to the very high ratio between the minimum and the maximum experimental values 
(respectively: 0.002 and 3.081 m−1), the method and software suggest operating a transformation of 
the response data before performing the ANOVA and to build the model in the same form 
(polynomial). Consequently, the models give an estimation of the natural logarithm of the opacity of 
exhaust gases in correspondence at an n-tuple of values for the involved factors. The subsequent 
calculation of the opacity is simple, involving a rising to the power of the Napier's constant. Apart 
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from this initial transformation, both the models resulting from the backward selection of terms 
have a quadratic form with two of the factors (biodiesel content, engine speed) raised to the second 
power. The resulting shape of the response surface is a basin, hence with a sensible contribution of 
the biodiesel content and engine speed to the curvature of the surface. 

The values of R2 and adjusted R2 are quite high for both the models (24 and 30 cases) and 
substantially at the same levels (beyond 0.899). This means, firstly, that the predictive capability of 
both the models is high with regards to only the cases used for the model building phase. Secondly, 
concerning the very small difference of R2 values, this means that the six control cases are, on 
average, well aligned with the calculated response surface, and the general trend has been 
completely respected when including also those cases in the second model. The slight differences of 
R2 and adjusted R2 are essentially due to the simplification of the model form (exclusion of the term 
with the interaction between biodiesel and engine speed) operated by the software. 

By looking at the same six control cases, it is possible to notice a not-acceptable predictive 
capability of the first model: indeed, for those cases, the average error is 5.62% and the mean squared 
error has a high value (40.07%), both beyond the threshold of 5% commonly considered for 
predictive models. This means that the deviations of the predicted values from the real values are 
significant and unevenly distributed with respect to the zero (the positive sign means that model 
generally overestimates the experimental situation). Although the model can give a good 
approximation of the trend of the plotted quantity (in this case, the opacity) and it can be used to 
draw conclusions concerning the influence of the factors on this response, it should be used with 
extreme caution in formulating specific predictions. 

3.2. Mechanical and environmental outputs as a function of the viscosity of the fuel blends 

In the following paragraphs the presented methodology has been applied to outline a 
correlation between the viscosity of the fuel blend and the motor outputs. This attempt was made 
despite it being known that the viscosity is certainly not the only parameter influencing the outputs 
of an engine (other such parameters surely being the LHV and the density), as confirmed by some of 
the results presented below. However, this attempt was carried out since the supply of bioethanol or 
biodiesel may not be constant during the year if considering the production process of these fuels 
from the perspective of a fully self-sufficient farm. Therefore, the most practical way to characterize 
a blend contained in a tank without using complex and expensive procedures is a quick viscosity 
test. 

3.2.1. Engine torque as a function of the viscosity of the fuel blends 

The following Table 10 shows the numerical regression models, respectively based on 24 and 30 
experimental cases, as resulted from the backward selection of the terms forming the most complete 
model handled by RSM. The equations are presented in terms of actual factors, i.e. the terms are 
used without any conversion or scaling. The following Figure 18 and Figure 19 give a graphical 
(2D/3D) representation of these equations, allowing the visualization of the trends and absolute 
values. 

Within the validity domains, the two resulting numerical models can be used to predict the 
engine torque at the different rotational speeds and the variation of the fuel mix kinematic viscosity 
by simply substituting the values of the input quantities. This is what has been done with the first 
model and the six control cases. 

Table 10. Main data concerning the two numerical models (respectively based on 24 and 30 cases) 
and the predictions of the models in six selected cases for the engine torque. 

Quantity 
Model 

nr. 1 (on 24 cases) nr. 2 (on 30 cases) 

Regression equation 
T[Nm] = +713.67423 +7.20838 ∙ 10−3 ∙ 

n[rpm] +14.32782 ∙ ν[mm2 s−1] 
−6.14489 ∙ 10−5 ∙ {n[rpm]}2 

T[Nm] = +5025.45458 +9.55847 ∙ 10−3 ∙ n[rpm] 
−2773.64811 ∙ ν[mm2 s-1] −6.24263 ∙ 10−5 ∙ 

{n[rpm]}2 +449.51032 ∙ {ν[mm2 s−1]}2 
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Fitting (on 
available 

cases) 

R2 0.9806 0.9865 (+0.0059) 
Adj. R2 0.9776 0.9843 (+0.0067) 

Ave. 
error 

−0.08% 0.00% (+0.08%) 

Mean 
sq. er. 

0.03% 0.03% (+0.00%) 

Prediction (on 
6 cases) 

Ave. 
error 

0.40% - 

Mean 
sq. er. 

0.02% - 

 

 
 

Figure 18. Contour plot (left) and 3D-graph (right) of the engine torque as a function of fuel 
kinematic viscosity and of the engine speed referred to the 1st model (24 cases) (NB: the values of 
torque are reported as labels directly on the contours). The same pictures show also the positions of 
the experimental measurements (black dots positioned within the investigated hyperspace; notice 
that many points are positioned under the represented surface and hence are not visible). 

 
 

Figure 19. Contour plot (left) and 3D-graph (right) of the engine torque as a function of fuel 
kinematic viscosity and of the engine speed referred to the 2nd model (30 cases) (NB: the values of 
Table . are reported as labels directly on the contours). The same pictures show also the positions of 
the experimental measurements (black dots positioned within the investigated hyperspace; notice 
that many points are positioned under the represented surface and hence are not visible). 

Both the models resulting from the backward selection of terms have a quadratic form, even if 
the 30-case model is more complete, having two of the factors (engine speed, kinematic viscosity) 
raised to the second power. The resulting shape of the response surface is somehow similar, due to 
the low influence of the kinematic viscosity on the curvature. 

The values of R2 and adjusted R2 are high for both the models (24 and 30 cases) and 
substantially at the same levels (beyond 0.9806). This means, firstly, that the predictive capability of 
both the models is high with regards to only the cases used for the model building phase. Secondly, 
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concerning the very small difference of R2 values, this means that the six control cases are on average 
well aligned with the calculated response surface, and the general trend has been completely 
followed when including also those cases in the second model. The slight differences of R2 and 
adjusted R2 of the two models are essentially due to the completion of the model form (inclusion of 
the term with the kinematic viscosity raised to the 2nd power) operated by the software. 

By looking at the same six control cases, it is possible to notice a high predictive ability of the 
first model: indeed, for those cases the average error is 0.40% and the mean squared error has an 
even lower value (0.02%), both far below the common threshold of 5% usually considered for 
predictive models. This means that the deviations of the predicted values from the real values are 
equally distributed above and below the zero, and the predicted values are quite close to real values. 
The model can give a very good approximation of the trend of the plotted quantity (the torque, in 
this case), so it can be used to draw conclusions concerning the influence of the factors on this 
response. Moreover, it can also be used to make precise specific predictions. 

Here, the prediction of the engine power at the different rotational speeds and the variation of 
the fuel mix viscosity is obtained starting from the same equation of the torque; the predicted value 
of the torque should be multiplied by the engine speed expressed in rad s−1. For the explained 
reason, no model for the power has been calculated. 

3.2.2. Hourly fuel consumption at full load as a function of the viscosity of the fuel blends 

The following Table 11 shows the numerical regression models, respectively based on 24 and 30 
experimental cases, as resulted from the backward selection of the terms forming the most complete 
model handled by RSM. The equations are presented in terms of actual factors, i.e. the terms are 
used without any conversion, scaling or non-dimensionalization. The following Figures 20 and 21 
give a graphical (2D/3D) representation of these equations, allowing the visualization of the trends 
and absolute values. 

Table 11. Main data concerning the two numerical models (respectively based on 24 and 30 cases) 
and the predictions of the models in six selected cases for the hourly fuel consumption at full load. 

Quantity 
Model 

nr. 1 (on 24 cases) nr. 2 (on 30 cases) 

Regression equation 

ch[g h−1] = −2.74704 ∙ 10+5 +10.79205 ∙ 
n[rpm] +1.74994 ∙ 10+5 ∙ ν[mm2 s−1] 

−2.32805 ∙ 10−3 ∙ {n[rpm]}2 −27922.84094 ∙ 
{ν[mm2 s−1]}2 

ch[g h−1] = −2.71164 ∙ 10+5 +9.63191 ∙ 
n[rpm] +1.74045 ∙ 10+5 ∙ ν[mm2 s−1] 

−2.02194 ∙ 10−3 ∙ {n[rpm]}2 −27885.68040 ∙ 
{ν[mm2 s−1]}2 

 

Fitting (on 
available 

cases) 

R2 0.8608 0.8571 (−0.0037) 
Adj. R2 0.8314 0.8343 (+0.0029) 

Ave. 
error 

−0.18% −0.06% (+0.12%) 

Mean 
sq. er. 

0.66% 0.60% (−0.06%) 

Prediction (on 
6 cases) 

Ave. 
error 

−0.86% - 

Mean 
sq. er. 

1.05% - 
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pictures show also the positions of the experimental measurements (black dots positioned within the 
investigated hyperspace; notice that many points are positioned under the represented surface and 
hence are not visible). 

 
 

Figure 21. Contour plot (left) and 3D-graph (right) of the hourly fuel consumption at full load as a 
function of fuel kinematic viscosity and of the engine speed referred to the 2nd model (30 cases) (NB: 
the values of hourly fuel consumption are reported as labels directly on the contours). The same 
pictures show also the positions of the experimental measurements (black dots positioned within the 
investigated hyperspace; notice that many points are positioned under the represented surface and 
hence are not visible). 

Within the validity domains, the two resulting numerical models can be used to predict the 
engine hourly fuel consumption at full load at the different rotational speeds and the variation of the 
fuel mix composition by simply substituting the values of the input quantities. This is what has been 
done with the first model and the six control cases. 

Both the models resulting from the backward selection of terms have a quadratic form with the 
same number of terms, having both the two considered factors (engine speed and kinematic 
viscosity) raised to the second power. The resulting shape of the response surface is substantially 
equal (a dome), with the kinematic viscosity having a little influence on the curvature in the 
considered domain. 

The values of R2 and adjusted R2 are quite high for both the models (24 and 30 cases) and 
substantially at the same levels (beyond 0.857). This means, firstly, that the predictive capability of 
both the models is quite high with regards to only the cases used for the model building phase. The 
very small difference of R2 values between the two models means that the six control cases are, on 
average, well aligned with the calculated response surface, and the general trend has been 
completely followed also including those cases in the second model. 

By looking at the same six control cases, it is possible to notice a high predictive capability of the 
first model: indeed, for those cases, the average error is −0.86% and the mean squared error is 1.05%, 
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both far below the common threshold of 5% usually considered for predictive models. This means 
that the deviations of the predicted values from the real values are equally distributed above and 
below the zero and the predicted values are quite close to real values. The model can give a good 
approximation of the trend of the plotted quantity (the hourly consumption, in this case), so it can be 
used to draw conclusions concerning the influence of the factors on this response. Moreover, it can 
also be used to make quite precise specific predictions. 

Also in this case, as presented above the prediction of the brake specific fuel consumption at the 
different rotational speeds and the variation of the fuel mix viscosity is simple starting from the 
same equation of the hourly consumption. For the explained reason, no model for the BSFC has been 
calculated. 

3.2.3. NOx concentration in the exhaust gases as a function of the viscosity of the fuel blends 

The following Table 12 shows the numerical regression models, respectively based on 24 and 30 
experimental cases, as resulted from the backward selection of the terms forming the most complete 
model handled by RSM. The equations are presented in terms of actual factors, i.e. the terms are 
used without any conversion or scaling or non-dimensionalization. The following Figures 22 and 23 
give a graphical (2D/3D) representation of these equations, allowing the visualization of the trends 
and absolute values. 

Within the validity domains, the two resulting numerical models can be used to predict the NOx 
concentration at the different rotational speeds and the variation of the fuel mix kinematic viscosity 
by simply substituting the values of the input quantities. This is what has been done with the first 
model and the six control cases. 

Both the models resulting from the backward selection of terms have a cubic form with only the 
kinematic viscosity) raised to the third power. The resulting shape of the response surface is 
substantially equal (a sort of wave), with the kinematic viscosity having a significant influence on 
the curvature in the considered domain. 

Table 12. Main data concerning the two numerical models (respectively based on 24 and 30 cases) 
and the predictions of the models in six selected cases for the NOx. 

Quantity 
Model 

nr. 1 (on 24 cases) nr. 2 (on 30 cases) 
Regression equation NOx[ppm] = +13839.40181 −0.20309 ∙ 

n[rpm] −8624.79484 ∙ ν[mm2 s−1] 
+0.084559 ∙ n[rpm] ∙ ν[mm2 s−1] 
−1.02166 ∙ 10−4 ∙ {n[rpm]}2 +1400.09439 ∙ 
{ν[mm2 s−1]}2 
 

NOx[ppm] = +12680.14971 +0.12940 ∙ 
n[rpm] −8011.28620 ∙ ν[mm2 s−1] 
−1.29296 ∙ 10−4 ∙{n[rpm]}2 +1318.53010 ∙ 
{ν[mm2 s−1]}2 
 

Fitting (on 
available 
cases) 

R2 0.9546 0.9397 (−0.0149) 
Adj. R2 0.9538 0.9390 (−0.0148) 
Ave. error 1.65% 0.08% (−1.57%) 
Mean sq. er. 0.81% 0.68% (−0.13%) 

Prediction 
(on 6 cases) 

Ave. error 7.56% - 
Mean sq. er. 2.67% - 
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Figure 22. Contour plot (left) and 3D-graph (right) of the NOx concentration in the exhaust gases as a 
function of fuel kinematic viscosity and of the engine speed referred to the 1st model (24 cases) (NB: 
the values of NOx concentration are reported as labels directly on the contours). The same pictures 
show also the positions of the experimental measurements (black dots positioned within the 
investigated hyperspace; notice that many points are positioned under the represented surface and 
hence are not visible). 

 
 

Figure 23. Contour plot (left) and 3D-graph (right) of the NOx concentration in the exhaust gases as a 
function of fuel kinematic viscosity and of the engine speed referred to the 2nd model (30 cases) (NB: 
the values of NOx concentration are reported as labels directly on the contours). The same pictures 
show also the positions of the experimental measurements (black dots positioned within the 
investigated hyperspace; notice that many points are positioned under the represented surface and 
hence are not visible). 

The values of R2 and adjusted R2 are very high for both the models (24 and 30 cases) and 
substantially at the same levels (beyond 0.939). This means, firstly, that the predictive capability of 
both the models is very high with regards to only the cases used for the model building phase. The 
model can give a good approximation of the trend of the plotted quantity (the hourly consumption, 
in this case), so it can be used to draw conclusions concerning the influence of the factors on this 
response. Moreover, it can also be used to make quite precise punctual predictions. 

By looking at the same six control cases, it is possible to notice a generally low predictive 
capability of the first model: indeed, for those cases, the average error is 7.56% and the mean squared 
error is 2.67%, the latter far below the common threshold of 5% usually considered for predictive 
models. Looking at the deviations of the predicted values with respect to the real values, it is 
possible to notice that the high average error is substantially due to the previsions on the two cases 
using B25E3, which have the same kinematic viscosity of B25 (3.264 vs. 3.265 mm2 s−1) but surely not 
the same NOx emissions: at the same engine speed the emissions with B25 are 100 ppm higher than 
B25E3. Excluding those two cases, the average error drops down at −1.10%. 
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3.2.4. CO of the exhaust gases as a function of the viscosity of the fuel blends 

The following Table 13 shows the numerical regression models, respectively based on 24 and 30 
experimental cases, as resulted from the backward selection of the terms forming the most complete 
model handled by RSM. The equations are presented in terms of actual factors, i.e. the terms are used 
without any conversion, scaling or non-dimensionalization. In this case the multilinear model is 
given as a function of the natural logarithm of the CO concentration, to better handle the high ratio 
between the minimum and the maximum experimental values. The following Figures 24 and 25 give 
a graphical (2D/3D) representation of these equations, allowing the visualization of the trends and 
absolute values. 

Within the validity domains, the two resulting numerical models can be used to predict the CO 
concentration at the different rotational speeds and the variation of the fuel mix kinematic viscosity 
by simply substituting the values of the input quantities. This is what has been done with the first 
model and the six control cases. 

Table 13. Main data concerning the two numerical models (respectively based on 24 and 30 cases) 
and the predictions of the models in six selected cases for the CO concentration in the exhaust gases. 

Quantity 
Model 

nr. 1 (on 24 cases) nr. 2 (on 30 cases) 

Regression equation 

Ln(CO[ppm]) = +42.88856 −0.063008 ∙ n[rpm] −10.69428 ∙ 
ν[mm2 s−1] +0.020956 ∙ n[rpm] ∙ ν[mm2 s−1] +1.41593 ∙ 10−5 ∙ 
{n[rpm]}2 +1.68731 ∙ {ν[mm2 s−1]}2 −3.39237 ∙ 10−3 ∙ n[rpm] ∙ 

{ν[mm2 s−1]}2−2.07463 ∙ 10−9 ∙ {n[rpm]}3 

Ln(CO[ppm]) = +21.01646 
−0.017519 ∙ n[rpm] −0.27489 ∙ 
ν[mm2 s−1] +4.83437 ∙ 10−6 ∙ 

{n[rpm]}2 

Fitting (on 
available 

cases) 

R2 0.9929 0.9851 (−0.0078) 
Adj. R2 0.9928 0.9850 (−0.0078) 

Ave. 
error 

−1.91% -1.96% (−0.05%) 

Mean 
sq. er. 

2.02% 3.52% (+1.50%) 

Prediction 
(on 6 
cases) 

Ave. 
error 

−5.34% - 

Mean 
sq. er. 

2.88% - 

 

 
 

Figure 24. Contour plot (left) and 3D-graph (right) of the logarithm of the CO concentration in the 
exhaust gases as a function of fuel kinematic viscosity and of the engine speed referred to the 1st 
model (24 cases) (NB: the values of the logarithm of CO concentration are reported as labels directly 
on the contours). The same pictures show also the positions of the experimental measurements (black 
dots positioned within the investigated hyperspace; notice that many points are positioned under the 
represented surface and hence are not visible). 
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Figure 25. Contour plot (left) and 3D-graph (right) of the logarithm of the CO concentration as a 
function of fuel kinematic viscosity and of the engine speed referred to the 2nd model (30 cases) (NB: 
the values of the logarithm of the CO concentration are reported as labels directly on the contours). 
The same pictures show also the positions of the experimental measurements (black dots positioned 
within the investigated hyperspace; notice that many points are positioned under the represented 
surface and hence are not visible). 

Although the two models resulting from the backward selection of terms have different forms 
(the 24-case model is cubic, the 30-case model is quadratic), the resulting shape of the response 
surface is quite similar. The contribution of the engine speed on the response surface shape is 
prevailing over the viscosity, and the values of the natural logarithm of the CO concentration 
sharply decrease with the rising of the speed, reaching a sort of plateau above 1370 rpm. 

The values of R2 and adjusted R2 are very high for both the models (24 and 30 cases) and 
substantially at the same values (beyond 0.985). This means, firstly, that the predictive capability of 
both the models is very high with regards to only the cases used for the model building phase. The 
model can give a good approximation of the trend of the plotted quantity (the CO concentration, in 
this case), so it can be used to draw conclusions concerning the influence of the factors on this 
response. Moreover, it can also be used to make quite precise specific predictions. 

By looking at the same six control cases, a generally low predictive ability of the first model can 
be observed: indeed, for those cases the average error is −5.34% and the mean squared error is 2.88%. 
Notwithstanding the good fitting operated on the 24 cases used to set up the model coefficients, the 
use of the fuel viscosity to predict the value of the CO concentration at several engine speeds is not 
recommended. 

3.2.5. Opacity of the exhaust gases as a function of the viscosity of the fuel blends 

The following Table 14 shows the numerical regression models, respectively based on 24 and 30 
experimental cases, as resulted from the backward selection of the terms forming the most complete 
model handled by RSM. The equations are presented in terms of actual factors, i.e. the terms are 
used without any conversion, scaling or non-dimensionalization. In this case the multilinear model 
is given as a function of the natural logarithm of the opacity, to better handle the high ratio between 
the minimum and the maximum experimental values. The following Figure 26 and 27 give a 
graphical (2D/3D) representation of these equations, allowing the visualization of the trends and 
absolute values. 

Within the validity domains, the two resulting numerical models can be used to predict the 
exhaust gases opacity at the different rotational speeds and the variation of the fuel mix kinematic 
viscosity by simply substituting the values of the input quantities. This is what has been done with 
the first model and the six control cases. 

Table 14. Main data concerning the two numerical models (respectively based on 24 and 30 cases) 
and the predictions of the models in six selected cases for the opacity in the exhaust gases. 
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Quantity 
Model 

nr. 1 (on 24 cases) nr. 2 (on 30 cases) 

Regression equation 

Ln(Opacity [m−1]) = −92.08952 −0.024706 ∙ 
n[rpm] +70.29248 ∙ ν[mm2 s−1] +2.57254 ∙ 10−3 ∙ 
n[rpm] ∙ ν[mm2 s−1] +4.72809 ∙ 10−6 ∙ {n[rpm]}2 

−11.88675 ∙ {ν[mm2 s−1]}2 

Ln(Opacity [m−1]) = −134.34316 
−0.016059 ∙ n[rpm] +94.08222 ∙ 

ν[mm2 s−1] +4.44021 ∙ 10−6 ∙ {n[rpm]}2 
−15.19390 ∙ {ν[mm2 s−1]}2 

 

Fitting (on 
available 

cases) 

R2 0.8781 0.8616 (−0.0165) 
Adj. R2 0.8689 0.8552 (−0.0137) 

Ave. 
error 

−7.14% −13.17% (−6.03%) 

Mean 
sq. er. 

25.90% 31.15% (+5.25%) 

Prediction 
(on 6 cases) 

Ave. 
error 

18.95% - 

Mean 
sq. er. 

20.84% - 

 

 

 

 

 

Figure 26. Contour plot (left) and 3D-graph (right) of the logarithm of the opacity (top) and of the 
opacity (bottom) of the exhaust gases as a function of fuel kinematic viscosity and of the engine 
speed referred to the 1st model (24 cases) (NB: the values of the logarithm of the opacity are reported 
as labels directly on the contours). The same pictures show also the positions of the experimental 
measurements (black dots positioned within the investigated hyperspace; notice that many points 
are positioned under the represented surface and hence are not visible). 
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Figure 27. Contour plot (left) and 3D-graph (right) of the logarithm of the opacity (top) and of the 
opacity (bottom) as a function of fuel kinematic viscosity and of the engine speed referred to the 2nd 
model (30 cases) (NB: the values of the logarithm of the opacity are reported as labels directly on the 
contours). The same pictures show also the positions of the experimental measurements (black dots 
positioned within the investigated hyperspace; notice that many points are positioned under the 
represented surface and hence are not visible). 

The two models resulting from the backward selection of terms have the same forms: both have 
a quadratic form with the viscosity term reaching the second power, even if with a different number 
of terms. The resulting shape of the response surface is quite similar and complex for the logarithm 
of the CO concentration by varying the viscosity of the blend, and simpler when considering the CO 
concentration directly: there is a wide plateau involving all cases having the engine speed greater 
than about 1000 rpm. The contribution of the engine speed on the response surface shape is well 
outlined in both the models (i.e., by increasing the engine speed the value of the logarithm 
decreases). The viscosity seems to have little influence on the figure of the opacity; only in the graph 
of the logarithm of the opacity this (however little) influence is evidenced by a slight waviness of the 
surface. 

The values of R2 and adjusted R2 are quite high for both the models (0.8781 and 0.8616 
respectively for the 24- and 30-case model). This means, firstly, that the predictive capability of both 
the models is quite high with regards to only the cases used for the model-building phase. Both the 
models can give a quite good approximation of the trend of the plotted quantity (the opacity, in this 
case), so they can be used to draw conclusions concerning the influence of the factors on this 
response. However, it is not recommended to use them to make precise specific predictions due to 
the high prediction errors (using the first model to make predictions, the average error is 18.95% and 
the mean squared error is 20.84%, both far above the threshold of 5%) shown for the six control 
cases. Therefore, it is possible to conclude that the use of the fuel viscosity to predict the opacity 
value at the several engine speeds is not recommended. Clearly, there are different fuel blends 
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having the same viscosity but producing very different effects of the exhaust gases in terms of 
opacity, in this case. 

4. Comments 

As can be seen in the following Table 15, the use of the RSM allows the highly precise 
expression of all the investigated variables concerning the main mechanical and environmental 
performances of an engine as a function of the fuel blend composition (in terms of percentages of 
biodiesel and bioethanol in the blends) and the engine speed. Observing the reported values of R2 
and adjusted R2, it is possible to conclude that the chosen factors are very good descriptors of the 
complex phenomena occurring in the whole energy generation system such as the engine of an 
agricultural machine. In particular, the models for the torque, the hourly consumption, the NOx 
concentration, the CO concentration and the opacity all present very high values of R2 (above 0.90). 

Moreover, within their validity domain, the proposed polynomial numerical models for all 
these factors are very accurate approximations of the real response functions, and their trends 
(expressed as first and second derivative) can be used instead of the trends of the real (unknown) 
response functions to investigate the machine response to a change of fuelling and formulate 
interesting considerations. 

Finally, excluding the models for hourly consumption and opacity, the same models are also 
applicable in formulating numerical predictions of the investigated factors. It is therefore possible to 
conclude that RSM can express its full potential also for ICEs when it is applied to develop 
correlations involving the fuel blend composition and the engine speed. Hence, the use of RSM is 
highly recommended in such a scenario as the one presented in the current paper. 

Table 15. Main data concerning the numerical models of several quantities as a function of the fuel 
blend composition and of the engine speed. 

Investigated 
response Model nr. 

Regr. 
Eq. 

order 

Fitting  
(on available cases) 

Prediction  
(on 6 cases) 

R2 Adj. R2 Ave. 
error 

Mean sq. 
error 

Ave.  
error 

Mean sq. 
error 

Torque [Nm]  

nr. 1 (on 
24 cases) 

2 0.9918 0.9901 0.07% 0.01% 0.38% 0.01% 

nr. 2 (on 
30 cases) 

2 
0.9930 

(+0.0012) 
0.9918 

(+0.0017) 
0.00% 

(−0.07%) 
0.01% 

(+0.00%) 
- - 

Hour cons 
[g h−1] 

nr. 1 (on 
24 cases) 

2 0.9248 0.8918 0.50% 0.41% 2.48% 0.92% 

nr. 2 (on 
30 cases) 

2 
0.9040 

(−0.0208) 
0.8790 

(−0.0128) 
0.00% 

(−0.50%) 
0.35% 

(−0.06%) 
- - 

NOx [ppm] 

nr. 1 (on 
24 cases) 

2 0.9825 0.9820 0.36% 0.17% 1.40% 0.25% 

nr. 2 (on 
30 cases) 

2 
0.9820 

(−0.0005) 
0.9816 

(−0.0004) 
0.11% 

(−0.25%) 
0.15% 

(−0.02%) 
- - 

Ln (CO 
[ppm]) 

nr. 1 (on 
24 cases) 

2 0.9879 0.9876 −1.46% 3.32% −0.91% 4.47% 

nr. 2 (on 
30 cases) 

2 
0.9869 

(+0.001) 
0.9866 

(+0.001) 
−1.84% 

(+0.38%) 
3.18% 

(+0.14%) 
- - 

Ln (Opacity 
[m−1]) 

nr. 1 (on 
24 cases) 

2 0.9242 0.9159 −5.60% 18.21% 5.62% 40.07% 

nr. 2 (on 
30 cases) 

2 
0.8993 

(−0.0249) 
0.8922 

(−0.0237) 
−9.48% 

(−3.88%) 
22.04% 

(+3.83%) 
- - 

In the following Table 16 it is possible to see that the use of RSM expresses the principal 
mechanical performances of an engine (i.e., the torque) as a function of the fuel blend kinematic 
viscosity and the engine speed with a high precision. This means that the fuel blend viscosity is a 
good descriptor for the mechanical behaviour of the tractor power unit (both R2 and adjusted R2 are 
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above 0.98), probably due to the operative flexibility of the injection system, which is able to 
compensate small differences in fuels LHV by varying the injected fuel quantity. Within their 
validity domain, the proposed polynomial numerical models for this variable are good 
approximations of the real response functions, and their trends (which can be expressed as first and 
second derivative) can be used instead of the trends of the real (unknown) response functions to 
investigate the machine response to a change of fuelling and to formulate interesting considerations. 
Also, considering that some blends present a different composition (hence also LHV) but a very 
similar viscosity (D100 and B15, B25 and B25E; please see Table 3), this entails that the fuel blend 
viscosity is the principal driver for a correct combustion of the fuel and in determining machine 
performance more than the different LHVs of the blends. This is displayed also by the high 
predictive capability of the torque model based on the kinematic viscosity and the engine speed. 
Nevertheless, the same conclusion cannot be drawn for the variable related to the fuel consumption 
(hourly fuel consumption) where, instead, the influence of the blend composition (through the 
values of LHV) is evident and reasonable. 

Finally, although the models concerning the three factors related to environmental 
performances of an engine (NOx and CO concentration, the opacity of exhaust gases) have a quite 
high R2 and adjusted R2 (both above 0.87), they cannot be considered reliable in the point predictions 
of the system response. Indeed, the high R2 values are due to the very complex models obtained by 
RSM (i.e., with a high polynomial degree and perhaps with a logarithmic transformation of initial 
data), but the high non-linearity of the response as well as the poor reliability of viscosity as indirect 
estimator for these variables make it inconvenient to use these models to predict exclusively the 
above-mentioned emissions. The very high values of the average error and mean squared error 
obtained by the first model for the six control cases confirm this, especially for the NOx concentration 
and the opacity of the exhaust gases. 

Table 16. Main data concerning the numerical models of several quantities as a function of the fuel 
blend viscosity and of the engine speed. 

Investigated 
response Model nr. 

Regr. 
Eq. 

order 

Fitting  
(on available cases) 

Prediction  
(on 6 cases) 

R2 Adj. R2 
Ave. 
error 

Mean sq. 
error 

Ave.  
error 

Mean sq. 
error 

Torque [Nm] 

nr. 1 (on 
24 cases) 

2 0.9806 0.9776 −0.08% 0.03% 0.40% 0.02% 

nr. 2 (on 
30 cases) 

2 
0.9865 

(+0.0059) 
0.9843 

(+0.0067) 
0.00% 

(+0.08%) 
0.03% 

(+0.00%) 
- - 

Hour cons 
[g h−1] 

nr. 1 (on 
24 cases) 

2 0.8608 0.8314 −0.18% 0.66% −0.86% 1.05% 

nr. 2 (on 
30 cases) 

2 
0.8571 

(-0.0037) 
0.8343 

(+0.0029) 
−0.06% 

(+0.12%) 
0.60% 

(−0.06%) 
- - 

NOx [ppm] 

nr. 1 (on 
24 cases) 

2 0.9546 0.9538 1.65% 0.81% 7.56% 2.67% 

nr. 2 (on 
30 cases) 

2 
0.9397 

(−0.0149) 
0.9390 

(−0.0148) 
0.08% 

(−1.57%) 
0.68% 

(−0.13%) 
- - 

Ln(CO 
[ppm]) 

nr. 1 (on 
24 cases) 

3 0.9929 0.9928 −1.91% 2.02% −5.34% 2.88% 

nr. 2 (on 
30 cases) 

2 
0.9851 

(−0.0078) 
0.9850 

(−0.0078) 
−1.96% 

(−0.05%) 
3.52% 

(+1.50%) 
- - 

Ln(Opacity 
[m−1]) 

nr. 1 (on 
24 cases) 

2 0.8781 0.8689 -7.14% 25.90% 18.95% 20.84% 

nr. 2 (on 
30 cases) 

2 
0.8616 

(−0.0165) 
0.8552 

(−0.0137) 
−13.17% 
(−6.03%) 

31.15% 
(+5.25%) 

- - 

Therefore, it is possible to conclude that RSM applied to the performance of ICEs can be applied 
also in combination with the kinematic viscosity, but only for the prediction of the mechanical 
performances of the ICE. Rather, the use of RSM applied on viscosity data is not recommended for 
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pollution-related factors such as NOx concentration, CO concentration and the opacity of exhaust 
gases, even though literature demonstrates that a physical correlation exists between these 
parameters (viscosity and emissions). 

In the following Table 17, the positive or negative correlations of each factor (column headings) 
with the indicated response (row headings) are reported (30-case models only). A positive 
correlation between a factor and a response indicates that, when the response value 
increases/decreases, an increase/decrease of the factor value is detected, meaning that the first 
partial derivative of the response with respect to the investigated factor has a positive value. Vice 
versa, there is a negative correlation of a response with a factor when the increasing/decreasing of 
that factor causes a decrease/increase of the response (being all other factors constant); in this case 
the value of the partial derivative of the response with respect to the investigated factor is negative.  

In some cases, the trend of the response is not fully determined: for example, the response can 
first increase and then decrease with the increasing of a factor, meaning that the first partial 
derivative of the response, made with respect to the investigated factor, is not constant. There is 
also another scenario to be considered only for the models using the blends composition as factors: 
the response can increase with the increasing of a factor only for a set of values of the other factor 
and decrease in other parts of the domain. In this case, the investigated first derivative has a 
dependence also with the other factor. For both of these two cases a complex correlation is reported 
in Table 17, thus directing the reader towards the graphical representations of the response surface. 

Table 17. Positive (+), negative (-) or complex (x) correlations of each factor (column headings) with 
the indicated response (row headings); the investigated model is nr. 2 for each response. 

Investigated 
response 

Engine outputs as a function of the 
composition of the blends 

Engine outputs as a function of the 
viscosity of the blends 

Biodiesel 
[%] 

Bioethanol 
[%] 

Engine speed 
[rpm] 

Kin. Viscosity 
[mm2 s−1] 

Engine speed 
[rpm] 

Torque [Nm]  + - - x - 
Hour cons [g h−1] x + + x + 

NOx [ppm] + - - x - 
Ln(CO [ppm]) - + - - x 

Ln(Opacity [m−1]) - - x x - 

As can be noticed, the dependence on the viscosity is complex in almost all the considered 
responses. This is to be expected, since a single influence factor has been voluntarily considered over 
a set of influence parameters, including e.g. the LHV and the density. In practice, when looking at 
responses related to the mechanical outputs, the kinematic viscosity is a good descriptor for the 
system response while the same parameter, even if not so influent, is not recommended for the 
pollution-related responses. 

5. Conclusions 

This article presents the application of the RSM to the prediction of the performance and the 
emissions of a tractor engine fuelled with different biofuels blends. The RSM is a numerical 
methodology based on finding a local polynomial approximation of the response of a system while 
varying many factors within a set validity domain. Its use is particularly indicated for very complex 
systems that can hardly be described analytically or with a simulation, but require a quite wide set of 
cases with many combinations of the values for the possible influencing factors. In particular, the 
numerical models for torque, fuel consumption and emissions of CO, NOx and exhaust opacity have 
been assessed for a New Holland T4020V farm tractor fuelled with five fuel blends of diesel oil, 
biodiesel and bioethanol in different percentages.  

The application of the RSM indicated that the fuel composition (expressed as percentages of 
alternative fuels in the blend) has clear effects on the above-listed engine performances (mechanical 
and environmental outputs) and the related mathematical models show a high fitting (R2 > 0.90 for 
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both mechanical and environmental outputs) and predictive capabilities (absolute average errors 
spanning from 0.38% to 5.62% on six check cases). Therefore, it can be concluded that RSM applied 
to fuel blend composition is very effective in predicting the performance of an agricultural engine.  

The kinematic viscosity, a physical parameter very easily obtained also for a fuel mix of 
unknown composition, is a particularly powerful indirect estimator only for the mechanical outputs 
of the motor (torque, hourly consumption) of this tractor. The average errors in the prediction of the 
outputs are all below 0.86% in this case. Conversely, the study also demonstrated that the motor 
environmental outputs (CO, NOx and opacity) cannot be reliably predicted by the kinematic 
viscosity and the engine speed alone, indicating that those responses are influenced also by other 
not-negligible parameters. Indeed, the RSM showed an acceptable fitting on the initial data (R2 > 
0.86), but poor predictive capabilities (absolute average errors above 5.34% on six check cases). 

In all the illustrated cases (models using the percentages of alternative fuels in the blend or 
using the kinematic viscosity), even if the predictive capability of the model is not high, the RSM 
proves to be a very effective tool for experimenters and machine manufacturers. Indeed, the high 
fitting obtained in all the RSM models indicates that the proposed numerical models adequately 
describe the system response to a variation of the considered factors. Hence, the proposed 
polynomial models can be used to investigate the effect of a change of fuelling on the machine 
response in term of increasing/decreasing trends: the models can be used to formulate interesting 
hypothesis on the characteristics which the fuel blends should exhibit before starting new 
experimental surveys. 

List of abbreviations 

2D Two-dimension (representation) 
3D Three-dimension (representation) 
ANOVA Analysis of Variance 
ASTM American Society for Testing and Materials 
BTE Brake Thermal Efficiency 
CI Compression Ignition (engine) 
CN Cetane Number 
CO Carbon Monoxide 
CO2 Carbon Dioxide 
Dyno (torque-/power-absorbing) Dynamometer 
EEC European Economic Community 
EGR Exhaust Gas Recirculation 
EN European Norm 
EURO Emission standards for road mobile machinery, published starting from 1992; each one is an 

amendment to the 1970 Directive 70/220/EEC 
FAP Anti-Particulate Filter (from French: “Filtre à particules”) 
FP Flash Point 
HC Hydrocarbon 
ICE Internal Combustion Engine 
ISO International Organization for Standardization 
LHV Lower Heating Value (of a generic fuel) 
NOx Nitrogen Oxides 
OECD Organization for Economic Co-operation and Development 
PM Particulate Matter 
PTO Power Take-Off 
RSM Response Surface Methodology 
SCR Selective Catalytic Reduction 
SI Spark Ignition (engine) 
TIER Emission standards for non-road mobile machinery, published starting from 1992; each one is 

an amendment to the 1970 Directive 70/220/EEC 
UHCs Unburned Hydrocarbons 
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UK United Kingdom 
UN United Nations 
USA United States of America 

List of symbols 

a0 Interception coefficient in a third-degree full-cubic regression model 
ai Generic coefficient of the 1st order terms in a third-degree full-cubic regression model (1 ≤ i ≤ m, 

m ≥ 2) 
aij Generic coefficient of the 2nd order terms in a third-degree full-cubic regression model 

(1 ≤ i ≤ j ≤ m, m ≥ 2) 
aijk Generic coefficient of the 3rd order terms in a third-degree full-cubic regression model 

(1 ≤ i ≤ j ≤ k ≤ m, m ≥ 2) 
B (%) Biodiesel volume-based share in a mixture [%] 
BxEy Blend label definition on the volume-based composition of Biodiesel and (bio)Ethanol 
BSFC Brake Specific Fuel Consumption [g (kW h)−1] 
ch Hourly fuel consumption [g h−1] 
cs Instant fuel consumption [g s−1] 
D (%) Diesel oil volume-based share in a mixture [%] 
E (%) (bio)Ethanol volume-based share in a mixture [%] 
f, g Generic function 
K Bulk Modulus [GPa] 
n Engine rotational speed [rpm] 
nPTO Rotational speed of the PTO [rpm] 
P Mechanical Power [kW] 
PPTO Mechanical Power at the PTO [kW] 
R2 Coefficient of determination [-] 
SMFR Stationary Mass Flow Rate [kg s−1] 
T Torque [Nm] 
xi Generic independent variable in a regression model (1 ≤ i ≤ k, k ≥ 2) 
y Generic predicted response in a regression model 
v Kinematic viscosity of a fuel [mm2 s−1] 
ρ Blend density [kg m−3] 
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