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Abstract

Pun, Matiram, Rachel Turner, Giacomo Strapazzon, Hermann Brugger, and Erik R. Swenson. Lower incidence
of COVID-19 at high altitude: Facts and confounders. High Alt Med Biol. 21:217–222, 2020.—The rapid
transmission, increased morbidity, and mortality of coronavirus disease 2019 (COVID-19) has exhausted many
health care systems and the global economy. Large variations in COVID-19 prevalence and incidence have
been reported across and within many countries worldwide; however, this remains poorly understood. The
variability and susceptibility across the world have been mainly attributed to differing socioeconomic status,
burden of chronic diseases, access to health care, strength of health care systems, and early or late adoption of
control measures. Environmental factors such as pollution, ambient temperature, humidity, and seasonal
weather patterns at different latitudes may influence how severe the pandemic is and the incidence of infection
in any part of the world. In addition, recent epidemiological data have been used to propose that altitude of
residence may not only influence those environmental features considered key to lesser viral transmission, but
also susceptibility to more severe forms of COVID-19 through hypoxic-hypobaria driven genomic or non-
genomic adaptations specific to high-altitude populations. In this review, we critically examine these factors and
attempt to determine based upon available scientific and epidemiological data whether living in high-altitude
regions might be protective against COVID-19 as recent publications have claimed.
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Introduction

Over 140 million people live at high altitude (>2500 m)
across several continents (Cohen and Small, 1998;

Penaloza and Arias-Stella, 2007), and many of these moun-
tainous regions are increasingly accessible with modern
means of transportation (West, 2008; Reisman et al., 2017).
Cases of coronavirus disease 2019 (COVID-19) caused by
the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) have been reported from high-altitude regions of
Europe, Asia, South America, North America, and Africa
(Arias-Reyes et al., 2020; Huamanı́ et al., 2020; Xi et al.,
2020; Zeng et al., 2020). Interestingly and provocatively,
an epidemiological analysis by Arias-Reyes et al. (2020)
pointed out a lower reported incidence of COVID-19 and
proposed a possible weaker transmission rate of severe
SARS-CoV-2 among high-altitude populations. Similarly, Xi

et al. (2020) reported negligible sustained local COVID-19
transmission on the Qinghai-Tibetan plateau, China. There
are numerous possible reasons for this apparent protection of
living in mountainous regions such as physiological adapta-
tion to hypoxia, ethnic and genetic population differences,
environmental factors pertaining to viral transmission, social
structure and norms, and success and extent of lockdown
measures. However, the fact that some lowland countries
have also had very little COVID-19, particularly the island
nations of the Pacific, suggests a much more complex
epidemiology.

In this review, we critically examine currently available
scientific and epidemiological data pertaining to COVID-19
transmission in the attempt to determine whether living at
high altitude and associated adaptations to hypobaric hypoxia
might be protective as recent publications have claimed
(Arias-Reyes et al., 2020; Xi et al., 2020). First, the role of
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hypoxia and genomic adaptations to prolonged high-altitude
residence is explored and then followed by a discussion of
the numerous other environmental aspects of mountainous
regions and the societal characteristics of countries with high-
altitude populations. We will highlight what is known about
the role of the angiotensin-converting enzyme 2 (ACE-2) and
its differences in tissue expression and genetic variants in
COVID-19 pathogenesis and identify areas where robust
scientific data are lacking and complex interactions should be
surmised with caution. We conclude by summarizing those
areas where further biological and epidemiological research
is needed to better understand whether living at high alti-
tude offers any benefits against SARS-CoV-2 infection and
severity.

Pathophysiological Considerations

Hypoxia

The unique exposure for high altitude residents is that of
chronic hypobaric hypoxia, which evokes many immediate
and sustained compensations to increase tissue oxygen de-
livery and enhance oxygen utilization by both nongenomic
and genomic mechanisms. Thus it can be argued that high-
altitude residents may be somewhat tolerant to the conse-
quences of more hypoxemia and systemic tissue hypoxia
developing as a result of COVID-19 infection and subsequent
lung injury. However, because high-altitude residents already
have lower baseline arterial oxygenation than sea level resi-
dents, it could make their disease-related hypoxemia worse
for any given degree of developing lung dysfunction despite
any preexisting adaptations to hypoxia. Although impossible
to test in humans, cell and tissue culture techniques or animal
models mimicking clinically relevant COVID-19 could be
used to test this hypothesis.

One aspect of high-altitude hypoxia with particular rele-
vance to COVID-19 is possible hypoxia-mediated differ-
ences in tissue expression of ACE-2 that could afford
protection against the virus in people living in mountainous
areas. SARS-CoV-2 entry into human cells is through bind-
ing of its exterior spike protein to ACE-2 and subsequent
internalization to access cell machinery for its replication
(Lu et al., 2020; Zhou et al., 2020). ACE-2 is widely present
in many human organs (Baig et al., 2020) with particularly
high expression in the upper and lower respiratory tract ep-
ithelia, vascular endothelium, myocardium, renal tubules,
gastrointestinal tract epithelium, testes, and central nervous
system. This expression helps to explain the particular mor-
bidity of COVID-19 including acute respiratory distress
syndrome, coagulopathy and thromboembolism, myocardi-
tis, acute kidney injury, diarrhea, anosmia, encephalitis, and
orchitis (Cardona Maya et al., 2020; Menni et al., 2020;
Wadman et al., 2020).

The pathophysiological rationale to quantitatively link the
expression level of ACE-2 to differences in viral suscepti-
bility, symptomology, and outcomes in those infected with
SARS-CoV-2 at high altitude was suggested by Arias-Reyes
et al. (2020). These authors proposed that SARS-CoV-2 may
be less virulent at high altitude owing to hypoxia-induced
downregulation of ACE-2 expression providing fewer re-
ceptors for the virus, but data supporting this contention are
not consistent or convincing. Zhang et al. (2009) reported a
blunted expression of ACE-2 in cell lines exposed to severe
hypoxia (2% oxygen) over 12 days. A similar observation

was made by Dang et al. (2020) when rats were exposed to
the hypoxia equivalent of *4500 m altitude over 45 days.

However, other studies in different models have reported
that hypoxia upregulates ACE-2. Oarhe et al. (2015) found
that hypoxia (1%) in fetal lung fibroblasts increased ACE-2
expression by twofold (Oarhe et al., 2015). Hampl et al.
(2015) showed that rats exposed to 10% oxygen for 2 weeks
had a doubling of lung tissue ACE-2 content (Hampl et al.,
2015). Joshi et al. (2019) demonstrated that human hemato-
poietic stem cells respond to 1% oxygen with an increase in
mRNA and ACE-2 protein ( Joshi et al., 2019). Most im-
portantly, it needs to be emphasized that there are currently
no human or animal data characterizing ACE-2 expression
during hypoxic conditions along the epithelium of the upper
and lower respiratory tracts, where the virus first infects hu-
mans through inhalation. Furthermore, any such experi-
mental observations on hypoxia exposure may not be relevant
to genetically adapted high-altitude populations such as Ti-
betans, Sherpas, Andeans, Ethiopian highlanders, or those
not of these ethnic groups, who were born and raised at high
altitude. Thus far, there are no published data that genetically
or highly adapted high-altitude residents have downregulated
ACE-2 expression. With multiple variants of the ACE-2 gene
found by single nucleotide polymorphism analysis present
across the world (Cao et al., 2020), high-altitude populations
might conceivably have protective variants. Such informa-
tion may become available with completion of the COVID-
19 Host Genetics Initiative (Ganna, 2020) now underway.

Any direct association of altitude and possible differences
in ACE-2 expression may oversimplify a very complex in-
teraction. First, it is well established that ACE-2 is a key el-
ement of the renin–angiotensin system (RAS) promoting
vasodilation and maintenance of normal capillary integrity
and affording cytoprotective anti-inflammatory, antioxida-
tive, and antithrombotic actions in the lungs and other organs
(Kuba et al., 2005). ACE-2 acts by catalyzing the formation
of angiotensin 1–7, which opposes the opposite actions of
angiotensin II (Xie et al., 2006; Lakatta, 2018), particularly in
severe acute lung disease such as that present in patients with
COVID-19. Second, it remains unclear whether any modest
differences in ACE-2 expression, which depend on circum-
stances such as age (Bunyavanich et al., 2020), host genetics
(Ghafouri-Fard et al., 2020), smoking status (Berlin et al.,
2020; Zhang et al., 2020), air pollution (Aztatzi-Aguilar et al.,
2015; Frontera et al., 2020), and drugs affecting the RAS
(Gao et al., 2020; Vaduganathan et al., 2020), translate into
differing degrees of susceptibility to SARS-CoV-2 infection.
Indeed, regardless of the inference that individuals with re-
duced ACE-2 expression may be less susceptible to severe
infection, there appears to be a paradoxical relationship be-
tween virally mediated membranous ACE-2 downregulation
and a predisposition to suffer more severe forms of COVID-
19 lung injury, perhaps related to decreased angiotensin 1–7
production (Zambelli et al., 2015; Cheng et al., 2020; Peiró
and Moncada, 2020).

Thus, the potential positive or negative impact of ACE-2
upregulation or downregulation in COVID-19 pathogenesis
and differing expression levels among populations should be
critically examined, as currently there is no definitive clinical
evidence in humans. The best evidence against any pertinent
disease modifying effect of differences in ACE-2 expression
relates to the widespread use of angiotensin receptor blockers
and ACE inhibitors. Therapeutic use of these drugs, while
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having been reported in some studies, but not all, to increase
ACE-2 expression has led to fear regarding their continued
usage during the pandemic (Bavishi et al., 2020; Patel and
Verma, 2020). The concern is unjustified because their ad-
ministration does not appear to cause any increased risk for
COVID-19 in patients on these medications for their intended
use in heart disease, hypertension, diabetes, and chronic
kidney disease (Amat-Santos et al., 2020; Khera et al., 2020).

Other environmental factors

The high-altitude environment has higher ultraviolet (UV)
radiation and is generally drier and colder. Atmospheric
measurements suggest that the general distribution of UV
energy below the ozone layer is 3%–5% of total sunlight
energy in the <400 nm wavelength range. Of this UV radia-
tion *95% is UV-A (wavelength: 315–400 nm), 5% is UV-B
(280–315 nm), and 0% is in the germicidal UV-C (200–
280 nm). Because a UV wavelength of 254 nm is most cidal
for SARS-CoV-2 and other viruses (Sangripanti and Lytle,
2020), it would be predicted that sunlight should not cause
significant UV inactivation of SARS-CoV-2. Arguably, there
might be some impact of the lesser killing efficiency of higher
UV-B wavelengths in sunlight, particularly if the amount of
UV-B at higher altitudes is greater than at sea level. Another
benefit of greater UV radiation at high altitude will be pos-
sibly higher vitamin D levels, which afford protection against
several other viral and bacterial infections by T cell en-
hancement (Grant et al., 2020). Thus, UV radiation might,
theoretically, contribute to slowing the spread of the virus as
some groups have suggested (Cadnum et al., 2020; Hamzavi
et al., 2020; Keil et al., 2020), but this needs to be examined
carefully. However, any action of UV radiation will only be
relevant to the outdoor environment and most viral trans-
mission occurs indoors, where people congregate in closer
quarters and spend many hours of the day.

The lower water content and humidity present at high al-
titudes may hasten viral desiccation and inactivation as a
possible benefit. Conversely, the generally colder tempera-
tures at high altitude, which decline by *0.6�C/100 m, may
increase COVID-19 risk. The incidence of COVID-19 re-
portedly declined with increasing temperature in the United
States (Sehra et al., 2020) and China (Shi et al., 2020). The
reported peak incidence of SARS-CoV-2 in a range of 5�C–
15�C with humidity range of 3–10 g/m3 further highlights the
niche of higher viral infection rates (Huang et al., 2020).
However, a consensus is yet to be reached on this topic,
because a further analysis incorporating meteorological
data from different Chinese cities found that both tempera-
ture and UV radiation were not significantly associated with
viral transmission (Yao et al., 2020).

Air pollution may be a factor in greater susceptibility to the
virus (Brandt et al., 2020; Fattorini and Regoli, 2020) and in
general many mountainous areas have less pollution related
to industry and automobiles. However, this may be countered
by biomass burning for heating and cooking, which can make
the indoor environmental conditions problematic along with
outdoor air quality in valley regions prone to meteorological
inversions (Thakur et al., 2020). Personal pollution exposure
in the form of tobacco smoking may be a risk factor for
greater COVID-19 rates (Alqahtani et al., 2020; Engin et al.,
2020), but this has not been found in all studies (Rossato
et al., 2020). Smoking increases airway epithelium expres-

sion of ACE-2 (Leung et al., 2020; Zhang et al., 2020) and
this may be further driven independently by airway nicotine
exposure (Russo et al., 2020).

Social Structure and Population Dynamics

In high-altitude communities, especially above 3000 m,
population density is lower compared with lowland areas
(Cohen and Small, 1998). Villages and towns at higher alti-
tudes are often remote, difficult to access, and take many days
to reach, especially under the restrictive travel conditions of a
global pandemic. Low population density and remoteness
may have played a major role in keeping COVID-19 at bay in
these regions, where social (physical) distancing is more an
extension of everyday life than an unusual hardship. Equally,
the active lifestyle required to sustain a livelihood at high
altitude means the population is typically younger, fitter, and
without a high prevalence of preexisting medical conditions
known to contribute to greater morbidity and mortality with
SARS-CoV-2 infection. However, the harsh lifestyle and
austere environment of some high-altitude regions, along
with limited access to health care, resources spent on health
care, capacity for viral testing and contact tracing will com-
plicate any public health intervention required if compla-
cency allows the virus to infiltrate these communities. Some
of these issues may not pertain as greatly to larger cities at
high altitude (e.g., Mexico City, La Paz, or Lhasa) or in high-
altitude mining operations, such as in the Andes.

Transportation and Lockdown Measures

It is possible that early lockdown measures, media cover-
age, and preventive guidelines may have favorably worked in
slowing the spread of the virus among high-altitude residents,
because the virus appeared later in mountainous regions. Low
population density, low traffic, or travel avoidance (from low-
altitude population centers to high-altitude communities), and
remoteness may have worked in tandem to further protect
high-altitude residents. It is also likely to take many days in
some mountainous regions of developing countries to reach
destinations, which may have provided sufficient isolation
time in some cases. However, cases of COVID-19 identified in
the Qinghai-Tibet high-altitude plateau were related to contact
with persons who had travelled from the Wuhan province
(Xi et al., 2020). Aggressive implementation of preventive
measures that target social isolation have helped to nullify
sustained local transmission in Qinghai-Tibet high-altitude
region. Therefore, it might be easier to prevent community
transmission at high altitude with travel restriction alone.

Conclusions: Challenges of SARS-CoV-2 Infection
at High Altitude

The reported lower incidence of COVID-19 among high-
altitude residents is quite intriguing, but epidemiological
observations presented so far from high-altitude regions are
preliminary. The data regarding virus transmission should be
carefully interpreted and any current observations regarding
high altitude-related differences in incidence, prevalence,
and morbidity/mortality of COVID-19 must be considered
speculative and hypothesis-generating because of the multi-
tude of other environmental, political, temporal, and health
care system factors at play. There is currently little supporting
evidence for any protective benefit of genetic or nongenomic
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adaptation to high-altitude hypoxia, including the concept
that hypoxia-mediated alterations in ACE-2 expression or
ACE-2 variants in particular population groups might have
relevance to the pathogenesis or severity of disease.

Given the myriad of other contributing factors to viral
infection rates and transmission enumerated previously, de-
ciphering whether high-altitude hypoxia is important either
as a risk factor or potential form of protection will remain
difficult to establish without further high-quality epidemio-
logical studies. We should avoid reaching the conclusion that
any community has an innate protection from COVID-19 in
the absence of robust evidence. Therefore, standard preven-
tive measures currently implemented by health agencies
worldwide must also be practiced by high-altitude travelers
and residents, until adequate controls are in place, and ulti-
mately effective treatments and vaccines become available.
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